Реферат: История и устройство микрофонов. Устройство микрофон


История и устройство микрофонов

История и устройство микрофонов

Собственно, первым термин "микрофон" предложил использовать британский изобретатель Сэр Чарльз Уитстоун в 1827 году. Его нехитрый инструмент для усиления слабых звуков — две тонкие рейки, сообщавшие механические колебания ушам, не имел ничего общего с тем, что теперь называется микрофоном. Ничего, кроме названия. Микрофон как устройство для преобразования акустического сигнала в электрический с сохранением волновых характеристик — появился в 1876 году. Правда, назывался он совершенно иначе — жидкостный передатчик (liquid transmitter).

Жидкостный передатчик

Принцип работы жидкостного передатчика достаточно прост. В трубообразный резервуар налито немного воды, на которой "плавает" пергаментная диафрагма.

К диафрагме присоединён провод — так, чтобы лишь едва соприкасаться с водой. В воду добавлено небольшое количество кислоты, чтобы улучшить её электропроводимость.

Когда человек что-то говорит в трубку, диафрагма начинает колебаться, так что провод соприкасается с водой то больше, то меньше. Соответственным образом изменяется сопротивление электрической цепи.

4 марта 1877 года американский изобретатель Эмиль Берлинер построил первый угольный микрофон. Однако развитие получил микрофон американского изобретателя Дэвида Юза (в мае 1878 года). Микрофон Юза содержал угольный стержень с заострёнными концами, упиравшийся в две угольные же чашечки, и соединённый с подвижной мембраной. Площадь контакта угольного стержня с чашечками сильно менялась при колебаниях мембраны, соответственно менялось и сопротивление угольного микрофона, а с ним и ток в цепи. Микрофон Юза совершенствовался многими изобретателями. Весьма значительно усовершенствовал этот тип микрофонов Эдисон. Он предложил использовать угольный порошок вместо угольного стержня, т. е. изобрёл новый вид угольного микрофона с угольным порошком. Автор наиболее прижившейся конструкции угольного микрофона — Энтони Уайт (1890).

Угольный микрофон практически не требует усиления сигнала, сигнал с его выхода можно подавать непосредственно на высокоомный наушник или громкоговоритель. Из-за этого свойства угольные микрофоны использовались до недавнего времени в телефонных аппаратах (с дисковым номеронабирателем). Однако угольный микрофон отличается плохой амплитудно-частотной характеристикой (он нечувствителен к слишком низким и слишком высоким частотам). Кроме того, в отличие от наиболее распространённого динамического микрофона, угольный требует питания постоянным током.

Первый "ленточный" микрофон "44А" изобретён в 1942 году сотрудниками американской компании RCA. Ему суждено было стать одним из самых популярных микрофонов для студийных записей. Собственно говоря, больше он нигде и не применялся: слишком тяжёл (3,5 килограмма). Однако он обладал и рядом заметных преимуществ: высокая чувствительность и узкая направленность, за счёт чего отсекались посторонние шумы.

В микрофоне использовалась лента длиной 50 мм и шириной 2,4 мм, которая двигалась в магнитном поле в соответствии со звуковым давлением. Впоследствии вес ленточных микрофонов значительно уменьшился, а для увеличения чувствительности стали использовать два ленточных капсюля сразу.

В настоящее время в профессиональной практике используются только динамические и конденсаторные микрофоны. Первый динамический микрофон ДМК изготовили на заводе "Октава" в 1936 году. Динамический микрофон — это наиболее распространённый тип конструкции микрофона. Диафрагма динамического микрофона связана с катушкой, находящейся в зазоре вокруг магнита.

Продольные колебания прилегающего воздуха смещают диафрагму с катушкой относительно постоянного магнитного поля, что приводит к появлению на концах катушки переменного электрического потенциала, напряжение и частота которого пропорциональны силе и частоте звука, воздействующего на диафрагму.

В отличие от конденсаторных, динамические микрофоны не требуют фантомного питания.

Компания AKG в 1947 году представила свой первый конденсаторный микрофон, но до 1962 года, когда Белл Лабс начали выпускать свою версию таких микрофонов, особой популярностью они не пользовались. А уже концу 1970-х годов приблизительно треть всех выпускаемых в мире микрофонов были конденсаторными.

В конденсаторном микрофоне звук воздействует на мембрану, являющуюся одной из обкладок конденсатора.

Этот конденсатор включен в последовательную цепь с источником постоянного тока. При звуковом воздействии на мембрану она начинает колебаться, вызывая изменение емкости, которое, в свою очередь, превращает постоянное напряжение источника в переменное.

Конденсаторный микрофон имеет очень высокое выходное сопротивление. В связи с этим, внутри его корпуса располагают предусилитель с высоким входным сопротивлением. Конденсаторные микрофоны обладают весьма равномерной амплитудно-частотной характеристикой и обеспечивают высококачественное звучание, в связи с чем широко используются в студиях звукозаписи, на радио и телевидении.

Недостатками их являются высокая стоимость, необходимость во внешнем питании и высокая чувствительность к ударам и климатическим воздействиям — влажности воздуха и перепадам температуры. Однако существует тип конденсаторного микрофона — электретный микрофон, который свободен от большинства перечисленных недостатков.

Принцип действия электретного конденсаторного микрофона основан на способности некоторых диэлектрических материалов (электретов) сохранять поверхностную неоднородность распределения заряда в течение длительного времени. Тонкая плёнка из гомоэлектрета помещается в зазор конденсатора, у которого мембрана имеет возможность перемещаться под действием внешнего акустического сигнала, либо пленка наносится на одну из обкладок. Это приводит к появлению некоторого постоянного заряда конденсатора. При изменении ёмкости, из-за смещения мембраны, на конденсаторе проявляется изменение напряжения, соответствующее акустическому сигналу.

Электретный микрофон имеет очень высокое сопротивление (несколько сотен кОм или Мом), что вынуждает подключать их к усилителям с высоким входным сопротивлением.

Заключение

Итак, самый первый микрофон, появившийся на свет в 1876 году, назывался жидкостный передатчик. Через год американский изобретатель Эмиль Берлинер построил первый угольный микрофон. Первый динамический микрофон был выпущен спустя почти 60 лет. "Ленточный" микрофон появился в 1942 году. А спустя еще 5 лет был представлен первый конденсаторный микрофон.

Сейчас в профессиональной практике используются только динамические и конденсаторные микрофоны. Динамические микрофоны довольно надёжны и крепки — во всяком случае, крепче конденсаторных, поэтому их, в основном, и используют на концертах. Но в связи с тем, что масса подвижных элементов в динамических микрофонах больше, их чувствительность заведомо ниже, чем в конденсаторных. Последние же имеют тенденцию записывать звук как он есть, со всеми недостатками. Поэтому даже те, кто способен петь "вживую" безупречно, предпочитают даже в студии использовать динамические микрофоны.

Список использованной литературы

· Вейценфельд, А. Устройство и технические параметры микрофонов / А. Вейценфельд // Звукорежиссер. – 2000. - №1.

· Избранные главы из истории микрофонов // Кладезь знаний - статьи, обзоры, новости, 2006. Режим доступа: http://Art.Thelib.Ru

· Микрофон // Википедия - свободная энциклопедия, 2008. Режим доступа: http://ru.wikipedia.org

mirznanii.com

Микрофон - это... Что такое Микрофон?

Микрофо́н (от греч. μικρός — маленький, φωνη — звук) — электроакустический прибор, преобразовывающий звуковые колебания в колебания электрического тока, устройство ввода.

Служит первичным звеном в цепочке звукозаписывающего тракта или звукоусиления. Микрофоны используются во многих устройствах, таких как телефоны и магнитофоны, в звукозаписи и видеозаписи, на радио и телевидении, для радиосвязи, а также для ультразвукового контроля и измерения.

История

Вначале наибольшее распространение получил угольный микрофон Эдисона, об изобретении которого также независимо заявляли Г.Махальский в 1878 и П. М. Голубицкий в 1883. Угольный микрофон до сих пор используется в аппаратах аналоговой телефонии. Действие его основывается на изменении сопротивления между зёрнами угольного порошка при изменении давления на их совокупность.

Конденсаторный микрофон был изобретён американским учёным Э. Венте в 1917 году. В нём звук воздействует на тонкую металлическую мембрану, изменяя расстояние между мембраной и металлическим корпусом. Тем самым образуемый мембраной и корпусом конденсатор меняет ёмкость. Если подвести к пластинам постоянное напряжение, изменение ёмкости вызовет ток через конденсатор, тем самым образуя электрический сигнал во внешней цепи.

Более массовыми стали динамические микрофоны, отличающиеся от угольных гораздо лучшей линейностью характеристик и хорошими частотными свойствами, а от конденсаторных — более приемлемыми электрическими свойствами.

Первым динамическим микрофоном стал изобретённый в 1924 году немецкими учёными Э. Герлахом и В. Шоттки электродинамический микрофон ленточного типа. Они расположили в магнитном поле гофрированную ленточку из очень тонкой (ок. 2 мкм) алюминиевой фольги. Такие микрофоны до сих пор применяются в студийной записи благодаря чрезвычайно высоким частотным характеристикам, однако их чувствительность невелика, выходное сопротивление очень мало (доли Ома), что значительно осложняло проектирование усилителей. Кроме того, достаточная чувствительность достижима только при значительной площади ленточки (а значит, и размерах магнита), в результате такие микрофоны имеют большие размеры и массу по сравнению со всеми остальными типами.

Пьезоэлектрический микрофон, сконструированный советскими учёными С. Н. Ржевкиным и А. И. Яковлевым в 1925 году, имеет в качестве датчика звукового давления пластинку из вещества, обладающего пьезоэлектрическими свойствами. Работа в качестве датчика давления позволила создать первые гидрофоны и записать сверхнизкочастотные звуки, характерные для морских обитателей.

В 1931 году американские учёные Э. Венте и А. Терас изобрели динамический микрофон с катушкой, приклеенной к тонкой мембране из полистирола или фольги. В отличие от ленточного, он имел существенно более высокое выходное сопротивление (десятки Ом и сотни кило Ом), мог быть изготовлен в меньших размерах и является обратимым.

Совершенствование характеристик именно этих микрофонов, в сочетании с совершенствованием звукоусилительной и звукозаписывающей аппаратуры, позволило развиться индустрии звукозаписи. Создание малых по размеру (даже несмотря на массу постоянного магнита, необходимого для работы микрофона), а также чрезвычайно чувствительных и узконаправленных динамических микрофонов в заметной степени изменило представление о приватности и породило ряд изменений в законодательстве (в частности, о применении подслушивающих устройств).

Тогда же разработанные электромагнитные микрофоны, в отличие от электродинамических, имеют закреплённый на мембране постоянный магнит и неподвижную катушку. Благодаря отсутствию жёстких требований к массе катушки (характерном для динамических микрофонов) такие микрофоны делались высокоомными, а также порой имели многоотводные катушки, что делало их более универсальными. Такие микрофоны, наряду с пьезоэлектрическими, позволили создать эффективные слуховые аппараты, а также ларингофоны.

Электретный микрофон, изобретённый японским учёным Ёгути в начале 20-х гг. XX века по принципу действия и конструкции близок к конденсаторному, однако в качестве неподвижной обкладки конденсатора и источника постоянного напряжения выступает пластина из электрета. Долгое время такие микрофоны были относительно дороги, а их очень высокое выходное сопротивление (как и конденсаторных, единицы мегаОм и выше) заставляло применять исключительно ламповые схемы.

Создание полевых транзисторов привело к появлению чрезвычайно эффективных, миниатюрных и лёгких электретных микрофонов, совмещённых с собранным в том же корпусе предусилителем на полевом транзисторе.

Устройство микрофона

Принцип действия микрофона с подвижной катушкой Конденсаторный микрофон Октава МК-319 внутри

Принцип работы микрофона заключается в том, что давление звуковых колебаний воздуха, воды или твердого вещества действует на тонкую мембрану микрофона. В свою очередь, колебания мембраны возбуждают электрические колебания; в зависимости от типа микрофона для этого используются явление электромагнитной индукции, изменение ёмкости конденсаторов или пьезоэлектрический эффект.

Свойства акустико-механической системы сильно зависят от того, воздействует ли звуковое давление на одну сторону диафрагмы (микрофон давления) или на обе стороны, а во втором случае от того, симметрично ли это воздействие (микрофон градиента давления) или на одну из сторон диафрагмы действуют колебания, непосредственно возбуждающие её, а на вторую — прошедшие через какое-либо механическое или акустическое сопротивление или систему задержки времени (асимметричный микрофон градиента давления).

Большое влияние на характеристики микрофона оказывает его механоэлектрическая часть.

Классификация микрофонов

Типы микрофонов по принципу действия

Сравнительные характеристики основных типов микрофонов (устаревшие данные из «БСЭ» 1967 год.):

Тип микрофона Диапазон воспринимаемых частот, Гц Неравномерность частотной характеристики, дБ Осевая чувствительность на частоте 1 000 Гц, мВ/Па
Угольный 300—3 400 20 1 000
Электродинамический катушечного типа 100—10 000 (1 класса)

30—15 000 (высшего класса)

12 0,5

~1,0

Электродинамический ленточного типа 50—10 000 (1 класса)

70—15 000 (высшего класса)

10 1

1,5

Конденсаторный 30—15 000 5 5
Пьезоэлектрический 100—5 000 15 50
Электромагнитный 300—5 000 20 5

Функциональные виды микрофонов

  • Студийный микрофон
  • Сценический микрофон
  • Измерительный микрофон («искусственное ухо»)
  • Микрофонный капсюль для телефонных аппаратов
  • Микрофон для применения в радиогарнитурах
  • Микрофон для скрытого ношения
  • Ларингофон
  • Гидрофон

Характеристики микрофонов

Схематическое обозначение микрофона

Микрофоны любого типа оцениваются следующими характеристиками:

  1. чувствительность
  2. амплитудно-частотная характеристика
  3. акустическая характеристика микрофона
  4. характеристика направленности
  5. уровень собственных шумов микрофона

Чувствительность

Чувствительность микрофона определяется отношением напряжения на выходе микрофона к звуковому давлению Р0, как правило, в свободном звуковом поле[1], то есть при отсутствии влияния отражающих поверхностей[2]. При распространении синусоидальной звуковой волны в направлении рабочей оси микрофона, это направление называется осевой чувствительностью:

M0 = U/P0 (мВ/Па).

Рабочей осью микрофона является направление его преимущественного использования и обычно совпадает с осью симметрии микрофона. Если конструкция микрофона не имеет оси симметрии, то направление рабочей оси указывается в технических условиях. Чувствительность современных микрофонов составляет от 1–2 (динамические микрофоны) до 10–15 (конденсаторные микрофоны) мВ/Па. Чем больше это значение, тем выше чувствительность микрофона.

Таким образом, микрофон с чувствительностью -75 дБ менее чувствителен, чем -54 дБ, а с обозначением 2 мВ/Па менее чувствителен, чем 20 мВ/Па. Для ориентировки : -54 дБ это то же, что и 2,0 мВ/Па. Также надо учесть, что если у микрофона меньше чувствительность, это вовсе не означает, что он хуже.

Частотная характеристика чувствительности

ЧХЧ микрофонов Октава МК-319 и Shure SM58

Частотная характеристика чувствительности (ЧХЧ) - это зависимость осевой чувствительности микрофона от частоты звуковых колебаний в свободном поле. Неравномерность ЧХЧ как правило измеряют в децибелах, как двадцать логарифмов(по основанию 10) отношения чувствительности микрофона на определенной частоте к чувствительности на опорной частоте (в основном 1 кГц).

Акустическая характеристика

Влияние звукового поля микрофона оценивается акустической характеристикой, которая определяется отношением силы, действующей на диафрагму микрофона, и звуковым давлением в свободном звуковом поле: A = F/P, а потому, что чувствительность микрофона M = U/P можно представить как U/P = U/F • F/P и выразить через А. Тогда получим: M = A • U / F. Отношение напряжения на выходе микрофона к силе, действующей на диафрагму U/F, характеризует микрофон как электромеханический преобразователь. Акустическая характеристика определяет характеристику направленности микрофона. По виду акустической характеристики, а следовательно и характеристики направленности, отличают три типа микрофонов, как приемников звука: приемники давления; градиента давления; комбинированные.

Характеристика направленности

Направленность микрофонов. Представление в полярных координатах
приемники давления
Ненаправленный
приемники градиента давления
Двунаправленный«Восьмерка»
комбинированные
Кардиоид
Гиперкардиоид

Характеристикой направленности называют зависимость чувствительности микрофона от направления падения звуковой волны по отношению к оси микрофона. Она определяется отношением чувствительности Мα при падении звуковой волны под углом α относительно акустической оси микрофона к его осевой чувствительности:

φ = Mα/M0

Направленность микрофона означает его возможное расположение относительно источников звука. Если чувствительность не зависит от угла падения звуковой волны, т. е. φ = 1, то микрофон называют ненаправленным, и источники звука могут располагаться вокруг него. А если чувствительность зависит от угла, то источники звука должны располагаться в пространственном угле, в пределах которого чувствительность микрофона мало отличается от осевой чувствительности.

Ненаправленные микрофоны

В ненаправленных микрофонах - приемниках давления, сила действующая на диафрагму определяется звуковым давлением у поверхности диафрагмы. Звуковое поле может действовать только на одну сторону диафрагмы. Вторая сторона конструктивно защищена. Если размеры микрофона малы по сравнению с длиной звуковой волны, то микрофон не изменяет звукового поля. Если размеры соизмеримы с длиной волны, тогда за счет дифракции звуковых волн микрофон преобретает направленность. На частотах от 5000 Гц и ниже такие микрофоны являются ненаправленными. Преимуществом ненаправленных микрофонов является простота конструкции, расчёта капсюля и стабильности характеристик с течением времени. Ненаправленные капсюли часто используют в составе измерительных микрофонов, в быту могут быть использованы для записи разговора людей, сидящих за круглым столом.

Микрофоны двустороннего направления

В микрофонах - приемниках градиента давления сила, действующая на движущуюся систему микрофона, определяется разностью звуковых давлений на двух сторонах диафрагмы. То есть, звуковое поле действует на две стороны диафрагмы. Характеристика направленности имеет вид восьмерки.

Двусторонние микрофоны удобны, например, для записи разговора двух собеседников, сидящих друг напротив друга.

Микрофоны одностороннего направления

Односторонняя направленность достигается в микрофонах комбинированного типа. Их диаграммы направленности близки по форме к кардиоиде, поэтому нередко их называют кардиоидными. Модификации микрофонов, имеющих еще меньшую направленность, чем кардиоидные, называют суперкардиоидными и гиперкардиоидными, однако эти разновидности, в отличие от кардиоидного микрофона, также чувствительны к сигналам с противоположной стороны.

Эти микрофоны имеют определенные преимущества в эксплуатации: источник звука располагается с одной стороны микрофона в пределах достаточно широкого пространственного угла, а звуки, распространяющиеся за его пределами микрофон не воспринимает.

Уровень шумов

Уровень собственных шумов микрофона Nш определяется отношением эффективного напряжения на выходе микрофона при отсутствии звукового поля Uш к напряжению U1 при наличии звукового поля с эффективным давлением в 0,1 Н/м²:

Nш = 20 lg Uш/U1, дБ.

Напряжение Uш обусловлено главным образом тепловыми шумами в компонентах электрической схемы микрофона.

Микрофон в искусстве

Владимир Семенович Высоцкий в 1971 году была написана «Песня микрофона»

..Меня часто отождествляют с героями моих песен, но никто и никогда не догадался еще спросить, не был ли я волком, лошадью или истребителем, от имени которых я тоже пою: ведь можно писать от имени любых предметов, в них во все можно вложить душу — и все! Например, у меня есть песня, которую я пою от имени микрофона, обыкновенного микрофона, как и вот этот, что стоит передо мной. Он много видел, это микрофон, о многом может рассказать. — В. В.

См. также

Примечания

Литература

Источники

dikc.academic.ru

2. Устройство микрофона. Микрофон: устройство, принцип действия, применение

Похожие главы из других работ:

Датчики измерения давления, температуры и качества воздуха

Устройство

1. Чувствительного элемента: материала, реагирующего на изменение его собственной температуры. 2. Контактов: проводящих пластинок или проводов, связывающих чувствительный элемент с внешней электронной схемой 3...

Датчики измерения давления, температуры и качества воздуха

Устройство

Инфракрасный датчик (ИК-датчик) (1) содержит сборный фильтр (6), позади которого расположен сборный детектор (7), и вычислительное устройство (8), связанное со сборным детектором (7). Сборный фильтр (6) содержит первый фильтр (9) и второй фильтр (10)...

Микропроцессорный тахометр

2.2 Устройство индикации

В качестве устройства индикации выбран четырехразрядный семисегментный светодиодный индикатор GNQ-3641ALS красного цвета с общими анодами. Его характеристики: потребляемый ток от 10 до 25 мА на сегмент; рабочее напряжение сегмента (при токе 20 мА) -- 2...

Микрофон: устройство, принцип действия, применение

1. История микрофона

Вначале наибольшее распространение получил угольный микрофон Эдисона, об изобретении которого также независимо заявляли Г.Махальский в 1878 и П.М. Голубицкий в 1883. Угольный микрофон до сих пор используется в аппаратах аналоговой телефонии...

Модули статистической обработки анализатора "Тензотрем"

1.4 Устройство управления

Устройство управления реализовано на базе микроконтроллераSilabs 8051F320 обеспечивает выполнение следующих функций. 1. Начальная инициализация аппаратных средств контроллера...

Навигаторы, их устройство и применение

2. Устройство навигатора

Любой GPS/ГЛОНАСС-автонавигатор представляет собой специализированный компактный персональный компьютер (КПК), программно-аппаратное обеспечение которого «заточено» под выполнение вполне определённых задач - задач навигации...

Обнаружение многопозиционного сигнала Баркера на фоне гауссовского шума

6) решающее устройство

Генератор сигнала 1 формирует n-позиционный сигнал (код Шермана, Баркера и т.п.), который поступает на вход модулятора 2, где осуществляется манипуляция несущей по амплитуде (АМн), либо по фазе (ФМн), либо по частоте (ЧМн)...

Прибор КСМ3-ПИ1000

4.1 Устройство.

Конструкция усилителя выполнена по блочно-модульному принципу и представляет собой набор функциональных блоков: - Усилитель предварительный УП - Усилитель оконечный УО - Трансформатор Тр Блок УП выполнен в виде печатной платы с...

Проектирование САУ приводом наведения реактивной бомбометной установки РБУ-6000

6. Корректирующее устройство

...

Разработка системы управления электроприводом нажимного устройства реверсивного четырехвалкового стана "5000" горячей прокатки

1.3.2 Разжимное устройство

Каждый нажимной механизм в аварийной ситуации может независимо поворачиваться при использовании механического разжимного устройства, приводимого в движение гидравлическим цилиндром, работающим от ручного клапана...

Разработка универсальной потенциометрической установки

3. Устройство установки

Установка выполнена в виде однотумбового стола. Для удобства перемещения установка поставлена на колеса и имеет ручки на боковых стенках. На вертикальной части установки размещены все переключатели, контрольные приборы...

САУ громкостью звука в аудитории

2.5 Выбор микрофона

Среди всех типов микрофонов, используемых в настоящее время, микрофоны на основе конденсаторов считаются наиболее перспективными. Капсюль - основная часть микрофона - представляет собой плоский конденсатор...

Система импульсно-фазового управления полупроводниковым преобразователем

4. Синхронизирующее устройство

Схема синхронизирующего устройства формирует напряжения, совпадающие по фазе с силовым напряжением на тиристорах, и изолирует СИФУ от сети. Напряжения получают с помощью трансформатора...

Уравновешивающие мосты

4.1 Устройство.

Конструкция усилителя выполнена по блочно-модульному принципу и представляет собой набор функциональных блоков: - Усилитель предварительный УП - Усилитель оконечный УО - Трансформатор Тр Блок УП выполнен в виде печатной платы с размещенными...

Устройство и эксплуатация АТС MERIDIAN 1

Устройство

В системе «Меридиан -1» модули размещаются один на другом в виде 5-и стативов. Схема размещения оборудования АТС представлена на рисунке 1.3. Рис 1.3. Схема размещения коммутационного оборудования АТС 1,2 3,8...

radio.bobrodobro.ru

Реферат - История и устройство микрофонов

История и устройство микрофонов

Собственно, первым термин «микрофон» предложил использовать британский изобретатель Сэр Чарльз Уитстоун в 1827 году. Его нехитрый инструмент для усиления слабых звуков — две тонкие рейки, сообщавшие механические колебания ушам, не имел ничего общего с тем, что теперь называется микрофоном. Ничего, кроме названия. Микрофон как устройство для преобразования акустического сигнала в электрический с сохранением волновых характеристик — появился в 1876 году. Правда, назывался он совершенно иначе — жидкостный передатчик (liquid transmitter).

Жидкостный передатчик

Принцип работы жидкостного передатчика достаточно прост. В трубообразный резервуар налито немного воды, на которой «плавает» пергаментная диафрагма.

К диафрагме присоединён провод — так, чтобы лишь едва соприкасаться с водой. В воду добавлено небольшое количество кислоты, чтобы улучшить её электропроводимость.

Когда человек что-то говорит в трубку, диафрагма начинает колебаться, так что провод соприкасается с водой то больше, то меньше. Соответственным образом изменяется сопротивление электрической цепи.

4 марта 1877 года американский изобретатель Эмиль Берлинер построил первый угольный микрофон. Однако развитие получил микрофон американского изобретателя Дэвида Юза (в мае 1878 года). Микрофон Юза содержал угольный стержень с заострёнными концами, упиравшийся в две угольные же чашечки, и соединённый с подвижной мембраной. Площадь контакта угольного стержня с чашечками сильно менялась при колебаниях мембраны, соответственно менялось и сопротивление угольного микрофона, а с ним и ток в цепи. Микрофон Юза совершенствовался многими изобретателями. Весьма значительно усовершенствовал этот тип микрофонов Эдисон. Он предложил использовать угольный порошок вместо угольного стержня, т. е. изобрёл новый вид угольного микрофона с угольным порошком. Автор наиболее прижившейся конструкции угольного микрофона — Энтони Уайт (1890).

Угольный микрофон практически не требует усиления сигнала, сигнал с его выхода можно подавать непосредственно на высокоомный наушник или громкоговоритель. Из-за этого свойства угольные микрофоны использовались до недавнего времени в телефонных аппаратах (с дисковым номеронабирателем). Однако угольный микрофон отличается плохой амплитудно-частотной характеристикой (он нечувствителен к слишком низким и слишком высоким частотам). Кроме того, в отличие от наиболее распространённого динамического микрофона, угольный требует питания постоянным током.

Первый «ленточный» микрофон «44А» изобретён в 1942 году сотрудниками американской компании RCA. Ему суждено было стать одним из самых популярных микрофонов для студийных записей. Собственно говоря, больше он нигде и не применялся: слишком тяжёл (3,5 килограмма). Однако он обладал и рядом заметных преимуществ: высокая чувствительность и узкая направленность, за счёт чего отсекались посторонние шумы.

В микрофоне использовалась лента длиной 50 мм и шириной 2,4 мм, которая двигалась в магнитном поле в соответствии со звуковым давлением. Впоследствии вес ленточных микрофонов значительно уменьшился, а для увеличения чувствительности стали использовать два ленточных капсюля сразу.

В настоящее время в профессиональной практике используются только динамические и конденсаторные микрофоны. Первый динамический микрофон ДМК изготовили на заводе «Октава» в 1936 году. Динамический микрофон — это наиболее распространённый тип конструкции микрофона. Диафрагма динамического микрофона связана с катушкой, находящейся в зазоре вокруг магнита.

Продольные колебания прилегающего воздуха смещают диафрагму с катушкой относительно постоянного магнитного поля, что приводит к появлению на концах катушки переменного электрического потенциала, напряжение и частота которого пропорциональны силе и частоте звука, воздействующего на диафрагму.

В отличие от конденсаторных, динамические микрофоны не требуют фантомного питания.

Компания AKG в 1947 году представила свой первый конденсаторный микрофон, но до 1962 года, когда Белл Лабс начали выпускать свою версию таких микрофонов, особой популярностью они не пользовались. А уже концу 1970-х годов приблизительно треть всех выпускаемых в мире микрофонов были конденсаторными.

В конденсаторном микрофоне звук воздействует на мембрану, являющуюся одной из обкладок конденсатора.

Этот конденсатор включен в последовательную цепь с источником постоянного тока. При звуковом воздействии на мембрану она начинает колебаться, вызывая изменение емкости, которое, в свою очередь, превращает постоянное напряжение источника в переменное.

Конденсаторный микрофон имеет очень высокое выходное сопротивление. В связи с этим, внутри его корпуса располагают предусилитель с высоким входным сопротивлением. Конденсаторные микрофоны обладают весьма равномерной амплитудно-частотной характеристикой и обеспечивают высококачественное звучание, в связи с чем широко используются в студиях звукозаписи, на радио и телевидении.

Недостатками их являются высокая стоимость, необходимость во внешнем питании и высокая чувствительность к ударам и климатическим воздействиям — влажности воздуха и перепадам температуры. Однако существует тип конденсаторного микрофона — электретный микрофон, который свободен от большинства перечисленных недостатков.

Принцип действия электретного конденсаторного микрофона основан на способности некоторых диэлектрических материалов (электретов) сохранять поверхностную неоднородность распределения заряда в течение длительного времени. Тонкая плёнка из гомоэлектрета помещается в зазор конденсатора, у которого мембрана имеет возможность перемещаться под действием внешнего акустического сигнала, либо пленка наносится на одну из обкладок. Это приводит к появлению некоторого постоянного заряда конденсатора. При изменении ёмкости, из-за смещения мембраны, на конденсаторе проявляется изменение напряжения, соответствующее акустическому сигналу.

Электретный микрофон имеет очень высокое сопротивление (несколько сотен кОм или Мом), что вынуждает подключать их к усилителям с высоким входным сопротивлением.

Заключение

Итак, самый первый микрофон, появившийся на свет в 1876 году, назывался жидкостный передатчик. Через год американский изобретатель Эмиль Берлинер построил первый угольный микрофон. Первый динамический микрофон был выпущен спустя почти 60 лет. «Ленточный» микрофон появился в 1942 году. А спустя еще 5 лет был представлен первый конденсаторный микрофон.

Сейчас в профессиональной практике используются только динамические и конденсаторные микрофоны. Динамические микрофоны довольно надёжны и крепки — во всяком случае, крепче конденсаторных, поэтому их, в основном, и используют на концертах. Но в связи с тем, что масса подвижных элементов в динамических микрофонах больше, их чувствительность заведомо ниже, чем в конденсаторных. Последние же имеют тенденцию записывать звук как он есть, со всеми недостатками. Поэтому даже те, кто способен петь «вживую» безупречно, предпочитают даже в студии использовать динамические микрофоны.

Список использованной литературы

· Вейценфельд, А. Устройство и технические параметры микрофонов / А. Вейценфельд // Звукорежиссер. – 2000. — №1.

· Избранные главы из истории микрофонов // Кладезь знаний — статьи, обзоры, новости, 2006. Режим доступа: Art.Thelib.Ru

· Микрофон // Википедия — свободная энциклопедия, 2008. Режим доступа: ru.wikipedia.org

www.ronl.ru

Устройство и принцип действия микрофонов

Количество просмотров публикации Устройство и принцип действия микрофонов - 461

ЛЕКЦИЯ 7. Микрофоны

Микрофон — это устройство для преобразования акустических колебаний воздушной среды в электрические сигналы.

По способу преобразования колебаний микрофоны подразделяют на:

– электродинамические (ленточные и катушечные)

– электростатические (конденсаторные и электретные)

– электромагнитные, угольные и др.

По диапазону воспринимаемых частот:

– узкополосные (речевые)

– широкополосные (музыкальные)

По направленности:

– ненаправленные (круговые)

– двунаправленные (восьмеричные или косинусоидальные)

– однонаправленные (кардиоидные, суперкардиоидные, гиперкардиоидные),

– остронаправленные

По помехозащищенности:

– шумозащищенные

– обычного исполнения

Основные параметры микрофонов: номинальный диапазон частот, модуль полного электрического сопротивления, чувствительность, типовая частотная характеристика чувствительности, характеристика направленности.

Номинальный диапазон частот — тот диапазон частот, в котором микрофон воспринимает акустические колебания и в котором нормируются его параметры. Для профессиональных студийных целœей обычно стремятся использовать микрофоны нулевой группы сложности высшей категории качества, для которых нормируется диапазон частот 20—20000 Гц. Микрофоны первой группы сложности должны иметь номинальный диапазон частот не менее 31,5—18000 Гц, второй группы 50—15000 Гц, третьей группы 63—12500 Гц.

Модуль полного электрического сопротивления (называемого также выходным или внутренним) нормируется на частоте 1 кГц. Сопротивление должна быть комплексным или активным. В случае если оно комплексное и, следовательно, зависимое от частоты, то приводят или модуль на частоте 1 кГц, или среднее значение по диапазону частот. Для микрофонов нулевой и первой групп сложности нормируется значение модуля полного электрического сопротивления 50 Ом и менее, 100 и 200 Ом, а для микрофонов второй и третьей групп сложности также еще и 2 кОм.

Чувствительность микрофона — это отношение напряжения U на выходе микрофона к воздействующему на него звуковому давлению р, выраженное в милливольтах на паскаль (мВ/Па): E=U/p.

Характеристика направленности R(q) — зависимость чувствительности микрофона в свободном поле на определœенной частоте f от угла q между рабочей осью микрофона и направлением на источник звука.

Диаграмма направленности — это графическое изображение характеристики направленности, ĸᴏᴛᴏᴩᴏᴇ чаще всœего приводят в полярных координатах.

Принцип действия электродинамического катушечного микрофона состоит в следующем. В кольцевом зазоре магнитной системы, имеющей постоянный магнит , находится подвижная катушка, скрепленная с диафрагмой. При воздействии на нее звукового давления, она вместе с подвижной катушкой начинает колебаться. В силу этого в витках катушки, перерезывающих магнитные силовые линии, возникает напряжение, являющееся выходным сигналом микрофона.

Электродинамический микрофон стабилен, имеет довольно широкий частотный диапазон, сравнительно небольшую неравномерность частотной характеристики.

Устройство ленточного электродинамического ленточного микрофона несколько отличается от устройства катушечной модификации. Здесь магнитная система микрофона состоит из постоянного магнита и полюсных наконечников, между которыми натянута легкая, обычно алюминиевая, тонкая (порядка 2 мкм) ленточка. При воздействии на обе ее стороны звукового давления возникает сила, под действием которой ленточка начинает колебаться, пересекая при этом магнитные силовые линии, вследствие чего на ее концах развивается напряжение. Так как сопротивление ленточки очень мало, то для уменьшения падения напряжения на соединительных проводниках оно подается на первичную обмотку повышающего трансформатора, размещенного непосредственно вблизи ленточки. Напряжение на зажимах вторичной обмотки трансформатора является выходным напряжением микрофона. Частотный диапазон этого микрофона довольно широк, а неравномерность частотной характеристики невелика.

Для электроакустических трактов высокого качества наибольшее распространение в настоящее время получил конденсаторный микрофон. Принципиально он работает следующим образом. Жестко натянутая мембрана под воздействием звукового давления может колебаться относительно неподвижного электрода, являясь вместе с ним обкладками электрического конденсатора. Этот конденсатор включается в электрическую цепь последовательно с источником постоянного тока и активным нагрузочным сопротивлением. При колебаниях мембраны емкость конденсатора меняется с частотой воздействующего на мембрану звукового давления, в электрической цепи появляется переменный ток той же частоты и на нагрузочном сопротивлении возникает падение напряжения, являющееся выходным сигналом микрофона. Конденсаторные микрофоны имеют самые высокие качественные показатели: широкий частотный диапазон, малую неравномерность частотной характеристики, низкие нелинœейные и переходные искажения, высокую чувствительность и низкий уровень шумов.

Принцип действия электретных микрофонов аналогичен принципу действия конденсаторных микрофонов, с тем отличием, что для их работы не требуется внешний источник питания. Мембрана таких микрофонов получает электрический заряд в процессе производства, и для их питания достаточно небольшого напряжения (обычно около 1,5 вольта), ĸᴏᴛᴏᴩᴏᴇ обеспечивается установленной в микрофоне батареей.

По сравнению с конденсаторными микрофонами, мембрана электретных микрофонов значительно толще, в связи с этим их чувствительность и частотные характеристики несколько хуже.

Стереофонический микрофон представляет собой систему из двух микрофонов, конструктивно размещенных в общем корпусе на одной оси друг над другом. Для записи по системе XY применяют стереофонические микрофоны, состоящие из двух одинаковых монофонических микрофонов с кардиоидными характеристиками направленности, причем акустические оси левого и правого микрофонов повернуты на 90° относительно друг друга (рис. 6.1, а). При записи по системе MS один из микрофонов (микрофон середины) имеет круговую характеристику направленности, а другой (микрофон стороны) — косинусоидальную характеристику направленности

(рис. 6.1, б).

Рис. 6.1. Характеристики направленности стереофонических микрофонов

Радиомикрофон представляет собой систему, состоящую из микрофона, переносного малогабаритного передатчика и стационарного приемника. Микрофон чаще всœего используют динамический катушечный или электретный. Передатчик либо совмещают в одном корпусе с микрофоном, либо выполняют карманного типа. Он излучает энергию радиочастот в УКВ диапазоне на одной из фиксированных частот. Вследствие влияния дополнительных преобразований в системе ʼʼпередатчик — эфир — приемникʼʼ качественные параметры радиомикрофона уступают параметрам обычного микрофона.

referatwork.ru

Реферат: "Микрофон: устройство, принцип действия, применение"

Выдержка из работы

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ДАЛЬНЕВОСТОЧНЫЙ ГОСУДАРСТВЕННЫЙ

ГУМАНИТАРНЫЙ УНИВЕРСИТЕТ"

Исторический факультет

Реферат

по дисциплине «Технические и аудиовизуальные средства обучения»

Микрофон, устройство, принцип действия, применение.

Выполнила:

студентка 1 курса

Мульнючкина М.В.

Проверил:

К. ф-м.н. Я.И. Микицей

Хабаровск, 2011 г.

Содержание

Введение

1. История микрофона

2. Устройство микрофона

3. Применение

Заключение

Список литературы

Введение

Для обработки и передачи на расстояния звуковой и визуальной информации звук и оптическое изображение необходимо представить в форме электрических сигналов.

Звук преобразуют в электрический сигнал посредством аппаратов, названных микрофоном. Микрофон это устройство для преобразования и усиления звуковых частот.

Микрофон решает такую проблему, как громкость голоса. С помощью микрофона привлекается внимание в больших помещениях.

1. История микрофона

Вначале наибольшее распространение получил угольный микрофон Эдисона, об изобретении которого также независимо заявляли Г. Махальский в 1878 и П. М. Голубицкий в 1883. Угольный микрофон до сих пор используется в аппаратах аналоговой телефонии. Действие его основывается на изменении сопротивления между зёрнами угольного порошка при изменении давления на их совокупность.

Конденсаторный микрофон был изобретён американским учёным Э. Венте в 1917 году. В нём звук воздействует на тонкую металлическую мембрану, изменяя расстояние между мембраной и металлическим корпусом. Тем самым образуемый мембраной и корпусом конденсатор меняет ёмкость. Если подвести к пластинам постоянное напряжение, изменение ёмкости вызовет ток через конденсатор, тем самым образуя электрический сигнал во внешней цепи.

Более массовыми стали динамические микрофоны, отличающиеся от угольных гораздо лучшей линейностью характеристик и хорошими частотными свойствами, а от конденсаторных -- более приемлемыми электрическими свойствами.

Первым динамическим микрофоном стал изобретённый в 1924 году немецкими учёными Э. Герлахом и В. Шоттки электродинамический микрофон ленточного типа. Они расположили в магнитном поле гофрированную ленточку из очень тонкой (ок. 2 мкм) алюминиевой фольги. Такие микрофоны до сих пор применяются в студийной записи благодаря чрезвычайно высоким частотным характеристикам, однако их чувствительность невелика, выходное сопротивление очень мало (доли Ома), что значительно осложняло проектирование усилителей. Кроме того, достаточная чувствительность достижима только при значительной площади ленточки (а значит, и размерах магнита), в результате такие микрофоны имеют большие размеры и массу по сравнению со всеми остальными типами.

Пьезоэлектрический микрофон, сконструированный советскими учёными С. Н. Ржевкиным и А. И. Яковлевым в 1925 году, имеет в качестве датчика звукового давления пластинку из вещества, обладающего пьезоэлектрическими свойствами. Работа в качестве датчика давления позволила создать первые гидрофоны и записать сверхнизкочастотные звуки, характерные для морских обитателей.

В 1931 году американские учёные Э. Венте и А. Терас изобрели динамический микрофон с катушкой, приклееной к тонкой мембране из полистирола или фольги. В отличие от ленточного, он имел существенно более высокое выходное сопротивление (десятки Ом и сотни кило Ом), мог быть изготовлен в меньших размерах и является обратимым.

Совершенствование характеристик именно этих микрофонов, в сочетании с совершенствованием звукоусилительной и звукозаписывающей аппаратуры, позволило развиться индустрии звукозаписи. Создание малых по размеру (даже несмотря на массу постоянного магнита, необходимого для работы микрофона), а также чрезвычайно чувствительных и узконаправленных динамических микрофонов в заметной степени изменило представление о приватности и породило ряд изменений в законодательстве (в частности, о применении подслушивающих устройств).

Тогда же разработанные электромагнитные микрофоны, в отличие от электродинамических, имеют закреплённый на мембране постоянный магнит и неподвижную катушку. Благодаря отсутствию жёстких требований к массе катушки (характерном для динамических микрофонов) такие микрофоны делались высокоомными, а также порой имели многоотводные катушки, что делало их более универсальными. Такие микрофоны, наряду с пьезоэлектрическими, позволили создать эффективные слуховые аппараты, а также ларингофоны.

Электретный микрофон, изобретённый японским учёным Ёгути в начале 20-х гг. XX века по принципу действия и конструкции близок к конденсаторному, однако в качестве неподвижной обкладки конденсатора и источника постоянного напряжения выступает пластина из электрета. Долгое время такие микрофоны были относительно дороги, а их очень высокое выходное сопротивление (как и конденсаторных, единицы мегаОм и выше) заставляло применять исключительно ламповые схемы.

Создание полевых транзисторов привело к появлению чрезвычайно эффективных, миниатюрных и лёгких электретных микрофонов, совмещённых с собранным в том же корпусе предусилителем на полевом транзисторе.

2. Устройство микрофона

Принцип действия микрофона с подвижной катушкой

Конденсаторный микрофон Октава МК-319 внутри

Принцип работы микрофона заключается в том, что давление звуковых колебаний воздуха, воды или твердого вещества действует на тонкую мембрану микрофона. В свою очередь, колебания мембраны возбуждают электрические колебания; в зависимости от типа микрофона для этого используются явление электромагнитной индукции, изменение ёмкости конденсаторов или пьезоэлектрический эффект.

Свойства акустико-механической системы сильно зависят от того, воздействует ли звуковое давление на одну сторону диафрагмы (микрофон давления) или на обе стороны, а во втором случае от того, симметрично ли это воздействие (микрофон градиента давления) или на одну из сторон диафрагмы действуют колебания, непосредственно возбуждающие её, а на вторую -- прошедшие через какое-либо механическое или акустическое сопротивление или систему задержки времени (асимметричный микрофон градиента давления).

Большое влияние на характеристики микрофона оказывает его механоэлектрическая часть

Динамический (электродинамический) микрофон -- наиболее распространённый тип конструкции микрофона. Он представляет собой мембрану, соединённую с лёгким токопроводом, который помещен в сильное магнитное поле, создаваемое постоянным магнитом. Колебания давления воздуха (звук) воздействуют на мембрану и приводят в движение токопровод. Когда токопровод пересекает силовые линии магнитного поля, в нем наводится ЭДС индукции. ЭДС индукции пропорциональна как амплитуде колебаний мембраны, так и частоте колебаний.

В отличие от конденсаторных, динамические микрофоны не требуют фантомного питания.

Динамический микрофон практически аналогичен по конструкции динамической головке (динамику, громкоговорителю). Это, в сущности, «обращение» динамика: вместо подачи напряжения на катушку динамика для создания звука с этой катушки снимается напряжение, созданное внешним звуком.

В ранней радиолюбительской практике динамики нередко использовались в качестве динамического микрофона, а некоторые радиостанции специально проектировались под использование в качестве и микрофона, и динамика одного устройства. Однако обычно динамик и микрофон имеют разное электрическое сопротивление, поэтому при использовании одного вместо другого можно необратимо испортить устройство.

Динамический микрофон конструктивно несколько отличается от динамика: у него другая конструкция мембраны, катушка содержит бомльшее количество витков и намотана гораздо более тонким проводом.

Классификация по типу проводника

В электродинамическом микрофоне катушечного типа применена диафрагма, связанная с катушкой индуктивности, находящейся в кольцевом зазоре магнитной системы. При колебаниях диафрагмы под действием звуковой волны витки катушки пересекают магнитные силовые линии и в катушке наводится эдс, создающая переменное напряжение. Такой микрофон надёжен в эксплуатации.

В электродинамическом микрофоне ленточного типа вместо катушки в магнитном поле располагается гофрированная ленточка из алюминиевой фольги. Такой микрофон применяется главным образом в студиях звукозаписи.

Конденсамторный микрофомн -- тип конструкции микрофона.

Представляет собой конденсатор, одна из обкладок которого выполнена из эластичного материала (обычно полимерная плёнка с нанесённой металлизацией), которая при звуковых колебаниях изменяет ёмкость конденсатора. Если конденсатор заряжен, то изменение ёмкости конденсатора приводит к изменению напряжения, которое и является полезным сигналом с микрофона. Для работы такого микрофона между обкладками должно быть приложено поляризующее напряжение, 60−80 вольт в более старых микрофонах, а в моделях после 60−70х годов 48 вольт. Такое напряжение питания в настоящее время стало стандартом. Именно с таким фантомным питанием выпускаются предусилители и звуковые карты. Конденсаторный микрофон имеет очень высокое выходное сопротивление. В связи с этим, в непосредственной близости к микрофону (внутри его корпуса) располагают предусилитель с высоким (порядка 1 ГОм) входным сопротивлением, выполненный на электронной лампе или полевом транзисторе. Как правило, напряжение для поляризации и питания предусилителя подаётся по сигнальным проводам (фантомное питание).

Конденсаторные микрофоны обладают весьма равномерной амплитудно-частотной характеристикой и обеспечивают высококачественный захват звука, в связи с чем широко используются в студиях звукозаписи, на радио и телевидении. Недостатками их являются высокая стоимость, необходимость во внешнем питании и высокая чувствительность к ударам и климатическим воздействиям -- влажности воздуха и перепадам температуры, что не позволяет использовать их в полевых условиях.

Существует тип конденсаторного микрофона -- электретный микрофон, который свободен от большинства перечисленных недостатков

Электремтный микрофомн -- разновидность конденсаторного микрофона.

Принцип действия электретного конденсаторного микрофона основан на способности некоторых диэлектрических материалов (электретов) сохранять поверхностную неоднородность распределения заряда в течение длительного времени.

Тонкая плёнка из гомоэлектрета помещается в зазор конденсаторного микрофона (то есть конденсатора, у которого одна из обкладок (мембрана) имеет возможность перемещаться под действием внешнего акустического сигнала) либо наносится на одну из обкладок. Это приводит к появлению некоторого постоянного заряда конденсатора. При изменении ёмкости, вследствие смещения мембраны, на конденсаторе проявляется изменение напряжения, соответствующее акустическому сигналу.

Принцип действия гетероэлектретного микрофона

В таком микрофоне сама гетероэлектретная плёнка служит мембраной. При её деформации на её поверхностях возникают разноимённые заряды, которые можно зарегистрировать, расположив электроды непосредственно на поверхности плёнки (на поверхность напыляют тонкий слой металла (алюминий, золото, серебро и т. п.).

Особенности подключения

Угольный микрофон -- один из первых типов микрофонов. Угольный микрофон содержит угольный порошок, размещённый между двумя металлическими пластинами и заключённый в герметичную капсулу. Стенки капсулы или одна из металлических пластин соединяется с мембраной. При изменении давления на угольный порошок изменяется площадь контакта между отдельными зёрнышками угля, и, в результате, изменяется сопротивление между металлическими пластинами. Если пропускать между пластинами постоянный ток, напряжение между пластинами будет зависеть от давления на мембрану.

3. Применение

Угольный микрофон из телефонного аппарата

Угольный микрофон практически не требует усиления сигнала, сигнал с его выхода можно подавать непосредственно на высокоомный наушник или громкоговоритель. Из-за этого свойства угольные микрофоны использовались до недавнего времени в телефонных аппаратах, их использование освобождало телефонный аппарат от дорогостоящих и дефицитных в то время полупроводниковых деталей либо громоздких, хрупких и энергоёмких усилителей на радиолампах. Классический телефонный аппарат с дисковым номеронабирателем обычно содержит угольный микрофон (однако, в аппаратах более поздних лет выпуска часто применяются динамические или электретные микрофоны, часто объединенные в единую конструкцию с усилителем, взаимозаменяемую с угольным микрофоном).

Однако угольный микрофон отличается плохой амплитудно-частотной характеристикой и узкой полосой пропускания (он нечувствителен к слишком низким и слишком высоким частотам), высоким уровнем шумов и искажений. Кроме того, в отличие от наиболее распространённого динамического микрофона, угольный требует питания постоянным током. Сейчас появились дешёвые и доступные полупроводниковые устройства, которые позволяют использовать микрофоны других типов. Поэтому в современных устройствах угольные микрофоны практически не применяются.

Типичная схема предусилителя на встроенном полевом транзисторе. Внешнее напряжение питания подаётся на U+; отделённая конденсатором переменная составляющая сигнала снимается с «Output»; резистор устанавливает режим работы транзистора и выходной импеданс.

В отличие от динамических микрофонов, имеющих низкое электрическое сопротивление катушки (~50Ом? 1 кОм), электретный микрофон имеет чрезвычайно высокий импеданс (имеющий емкостный характер, порядка десятков пФ), что вынуждает подключать их к усилителям с высоким входным сопротивлением. В конструкцию практически всех электретных микрофонов входит предусилитель («преобразователь сопротивления», «согласователь импеданса») на полевых транзисторах, реже на миниатюрных радиолампах с входным сопротивлением порядка 1 ГОм и выходным сопротивлением в сотни Ом, находящийся в непосредственной близости от капсюля. Поэтому, несмотря на отсутствие необходимости в поляризующем напряжении, такие микрофоны требуют внешнего источника электропитания.

Функциональные виды микрофонов

· Студийный микрофон

· Измерительный микрофон («искусственное ухо»)

· Микрофонный капсюль для телефонных аппаратов

· Микрофон для применения в радиогарнитурах

· Микрофон для скрытного ношения

· Ларингофон

· Гидрофон

Характеристики микрофонов

Схематическое обозначение микрофона

Микрофоны любого типа оцениваются следующими характеристиками:

1. чувствительность

2. амплитудно-частотная характеристика

3. акустическая характеристика микрофона

4. характеристика направленности

5. уровень собственных шумов микрофона

Чувствительность

Чувствительность микрофона определяется отношением напряжения на выходе микрофона к звуковому давлению Р0 в свободном звуковом поле, т. е. при отсутствии сигнала. При распространении синусоидальной звуковой волны в направлении акустической оси микрофона, это направление называется осевой чувствительностью: M0 = U / P0(мВ/н/м?)

Акустическая ось совпадает с осью симметрии микрофона. Если конструкция микрофона не имеет оси симметрии, то направление акустической оси указывается в технических условиях. Чувствительность современных микрофонов составляет от 1−2 (динамические микрофоны) до 10−15 (конденсаторные микрофоны) мВ/Па

Амплитудно-частотная характеристика

АЧХ микрофонов Октава МК-319 и Shure SM58

Амплитудно-частотная характеристика (АЧХ), или просто частотная характеристика — это зависимость осевой чувствительности от частоты звуковых колебаний. Эта характеристика связана с зависимостью чувствительности микрофона от частоты звуковых колебаний. Неравномерность амплитудно-частотной характеристики измеряют в децибелах как отношение чувствительности микрофона на определенной частоте к чувствительности на средней частоте, например 1000 Гц.

Акустическая характеристика

Влияние звукового поля микрофона оценивается акустической характеристикой, которая определяется отношением силы, действующей на диафрагму микрофона, и звуковым давлением в свободном звуковом поле:

A = F/P,

а потому, что чувствительность микрофона

M = U/P

можно представить как

U/P = U/F * F/P

микрофон звук запись усиление

и выразить через А. Тогда получим:

M = A * U / F.

Отношение напряжения на выходе микрофона к силе, действующей на диафрагму U/F, характеризует микрофон как электромеханический преобразователь. Акустическая характеристика определяет характеристику направленности микрофона. По виду акустической характеристики, а следовательно и характеристики направленности, отличают три типа микрофонов, как приемников звука: приемники давления; градиента давления; комбинированные.

Характеристика направленности

Направленность микрофонов. Представление в полярных координатах

приемники давления

Ненаправленный

приемники градиента давления

Двунаправленный«Восьмерка»

комбинированные

Кардиоид

Гиперкардиоид

Характеристикой направленности называют зависимость чувствительности микрофона от направления падения звуковой волны по отношению к оси микрофона. Она определяется отношением чувствительности М? при падении звуковой волны под углом? относительно акустической оси микрофона к его осевой чувствительности:

? = M?/M0

Направленность микрофона означает его возможное расположение относительно источников звука. Если чувствительность не зависит от угла падения звуковой волны, т. е.? = 1, то микрофон называют ненаправленным, и источники звука могут располагаться вокруг него. А если чувствительность зависит от угла, то источники звука должны располагаться в пространственном угле, в пределах которого чувствительность микрофона мало отличается от осевой чувствительности.

Ненаправленные микрофоны

В микрофонах — приемниках давления сила, действующая на диафрагму, определяется звуковым давлением у поверхности диафрагмы. Звуковое поле может действовать только на одну сторону диафрагмы. Вторая сторона конструктивно защищена. Если размеры микрофона малы по сравнению с длиной звуковой волны, то микрофон не изменяет звукового поля. А если больше, тогда за счет дифракции звуковых волн давление меняется. На низких частотах от 1000 Гц и ниже такие микрофоны не имеют направленного действия.

Ненаправленные микрофоны удобны, например, для записи разговора людей, сидящих за круглым столом.

Микрофоны двустороннего направления

В микрофонах — приемниках градиента давления сила, действующая на движущуюся систему микрофона, определяется разностью звуковых давлений на двух сторонах диафрагмы. То есть, звуковое поле действует на две стороны диафрагмы. Характеристика направленности имеет вид восьмерки.

Двусторонние микрофоны удобны, например, для записи разговора двух собеседников, сидящих друг напротив друга.

Микрофоны одностороннего направления

Односторонняя направленность достигается в микрофонах комбинированного типа. Их диаграммы направленности близки по форме к кардиоиде, поэтому нередко их называют кардиоидными. Модификации микрофонов, имеющих еще меньшую направленность, чем кардиоидные, называют суперкардиоидными и гиперкардиоидными, однако эти разновидности, в отличие от кардиоидного микрофона, также чувствительны к сигналам с противоположной стороны.

Эти микрофоны имеют определенные преимущества в эксплуатации: источник звука располагается с одной стороны микрофона в пределах достаточно широкого пространственного угла, а звуки, распространяющиеся за его пределами микрофон не воспринимает.

Уровень шумов

Уровень собственных шумов микрофона Nш определяется отношением эффективного напряжения на выходе микрофона при отсутствии звукового поля Uш к напряжению U1< /sub при наличии звукового поля с эффективным давлением в 0,1 н/м?:

Nш = 20 lg Uш/U1, дБ.

Напряжение Uш обусловлено главным образом тепловыми шумами в опорах электрической схемы микрофона.

Заключение

Можно сделать несколько выводов. Микрофон нужен для усиления звука. Он необходим для того, чтобы звук было слышно и слышно отчетливо.

Принцип работы микрофона заключается в том, что давление звуковых колебаний воздуха, воды или твердого вещества действует на тонкую мембрану микрофона. В свою очередь, колебания мембраны возбуждают электрические колебания; в зависимости от типа микрофона для этого используются явление электромагнитной индукции, изменение ёмкости конденсаторов или пьезоэлектрический эффект.

Очень много видов микрофона. В зависимости от видов микрофонов принцип действия разный. Их применение тоже, например, с помощью двустороннего микрофона можно записывать голос сабеседника. Их применение зависит от вида.

Список литературы

1. Коджаспирова, Г. М. Технические средства обучения и методика их применения — М, 2001

2. Воронин Ю. А. Технические и аудиовизуальные средства обучения: Учебное пособие / Ю. А. Воронин. — Воронеж: Воронежский государственный педагогический университет, 2001.

Показать Свернуть

sinp.com.ua

Устройство микрофонов

Тема

Устройство микрофонов

Звуковые колебания, воспринятые мембраной, должны быть преобразованы в электрические сигналы. Для этого к мембране присоединяют электромеханический преобразователь, работающий в генераторном режиме.

В зависимости от того, какая система преобразования использована в микрофоне, различают электродинамические, электромагнитные, электростатические, пьезоэлектрические и угольные микрофоны.

Микрофоны электромагнитной системы. Разборчивая передача речи по проводам впервые была осуществлена 3 июля 1875 г. А. Беллом (1847 – 1922) при помощи микрофона электромагнитной системы. Микрофон запатентован в 1876 г.

Конструкция микрофона показана на рис. 1, где в роли якоря выступает мембрана микрофона. Однако, такая конструкция мало пригодна для практического применения, т. к.:

  • на мембрану действует постоянная составляющая силы, прогибающая мембрану, и мембрана должна быть достаточной толщины, чтобы противостоять этому воздействию;

  • магнитное сопротивление мембраны должно быть небольшим, что также требует увеличения её толщины.

Толстая мембрана обладает большой инерцией и, следовательно, будет плохо воспроизводить верхние частоты звукового диапазона. Для улучшения характеристик микрофона необходимо компенсировать постоянную составляющую силы. Это можно сделать, поместив мембрану между полюсами двух магнитов. Так, например , устроен распространенный в СНГ микрофон ДЭМШ (см. рис. 1).

Устройство микрофона ДЭМШ Рисунок 1

Диапазон воспроизводимых частот микрофона ДЭМШ 300 – 3000 Гц, средняя чувствительность при работе на нагрузку 600 Ом – 0.22 мВ/Па, модуль полного сопротивления - Ом, габариты мм, масса – 14 г.

Как видим, парметры микрофона обеспечивают запись речи, но не позволяют осуществить запись музыкальных программ.

Ещё можно встретить микрофон электромагнитной системы МЭМ-60. Этот микрофон воспроизводит диапазон частот Гц.

Имеет чувствительность на нагрузке 600 Ом и частоте 1000 Гц равную ~ 10 мВ/Па. Модуль полного сопротивления 300 Ом. Габариты мм и массу 400 г.

Микрофоны электромагнитной системы отличаются высокой vеханической прочностью, надежностью и применяются на транспорте, в армии – там, где тяжелые условия эксплуатации.

Первые идеи и работы по созданию микрофона электродинамической системы связаны с именами Каттриса, Реддинга и Сименса (C. Cuttris, J. Redding патент США № 242.816, 1881 г.; Simens E.W. немецкий патент № 2355, 1878 г.).

Однако, первые образцы микрофона, пригодные для практического применения, созданы Вентом и Тьюрасом (Wente E.C., Thuras A.L. J. Ac. Soc. Am. Vol. 3, july 1931). Различают катушечные и ленточные микрофоны этой системы.

Катушечный микрофон представляет собой мембрану, к которой прикреплена катушка, содержащая несколько десятков витков провода. Катушка помещена в радиальное магнитное поле, создаваемое постоянным магнитом.

При воздействии на мембрану звуковых волн, колебания мембраны передаются катушке и в ней возникает э.д.с. е = . Частотная характеристика микрофона (т.е. зависимость е от частоты f) должна быть равномерной.

Чтобы выяснить, при каких условиях это возможно, напишем выражение для чувствительности микрофона:

(1)

где =- коэффициент нагрузки микрофона, - коэффициент электромеханической связи, - механическое сопротивление колебательной системы микрофона. - акустическая чувствительность микрофона. Единственный член в формуле (1.), который зависит от частоты – механическое сопротивление z.

Следовательно, механическая и акустическая часть должна быть построена так, чтобы в пределах рабочей полосы частот сопротивление z оставалось неизменным или менялось незначительно.

Практически это достигается созданием сложных (состоящих из нескольких колебательных контуров) резонансных систем. Таким способом удаётся получить частотную характеристику микрофона с полосой частот Гц и неравномерностью дБ. На рис. 2 показана конструкция микрофона МД-85А.

1 – капсюль, 2 – корпус, 3 – крышка, 4 – кабель, 5 – прижимная деталь, 6 – манжета, 7 – амортизатор, 8 – мембрана, 9 – звуковая катушка, 10 – магнит, 11 – стакан, 12 – фланец, 13 – полюсный наконечник, 14 – ткань, 15 – накладка, 16 – объём в корпусе, 17 – отверстия в дне корпуса, 18 – боковые отверстия корпуса. Рисунок 2

Полости капсюля и корпуса, связанные между собой через отверстия, образуют сложную резонансную систему.

Благодаря простоте и надежности конструкции, хорошим электроакустическим параметрам катушечные микрофоны получили широкое распространение.

Ленточный микрофон представляет собой гибкую ленточку длиной см, помещенную между полюсными наконечниками постоянного магнита (см. рис. 3).

В полюсных наконечниках делают ряд отверстий для того, чтобы уменьшить разность хода волн, действующих на ленточку с разных сторон. Расстояние между отверстиями не превышает 1.7 см, что обеспечивает равномерность частотной характеристики до ~ 15000 Гц.

Магнитная индукция в зазоре ~ 1 Тл. Э.д.с. порядка 1 мВ. Для повышения выходного напряжения микрофон снабжен трансформатором с коэффициентом трансформации 50 или более.

При этом выходное сопротивление микрофона получается около Ом. Осевая чувствительность микрофона:

где n – коэффициент трансформации, S – площадь ленточки, l – длина ленточки, - резонансная частота подвижной системы, СМ – гибкость ленточки.

Из этой формулы следует, что для повышения чувствительности ленточного микрофона необходимо увеличивать площадь ленточки, индукцию в щели и гибкость ленточки.

Эти требования – противоречивы, т.к. увеличение площади (за счет увеличения ширины ленточки) приводит к уменьшению гибкости. Обычно ленточку делают гофрированной и уменьшают её толщину до 2 микрон, но при этом теряется прочность. Поэтому ленточные микрофоны используют только в помещениях, т.к. даже дуновение ветра может порвать ленточку

1 – гофрированная ленточка, 2 – полюсные наконечники с отверстиями, 3 – постоянный магнит, 4 – щель между полюсными наконечниками, 5 – отверстия в полюсных наконечниках, 6 – изоляционные планки.Устройство ленточного микрофона.Рисунок 3

Отечественные микрофоны электродинамической системы маркируют буквами: МД – катушечные микрофоны, МЛ – ленточные микрофоны.

Микрофоны электростатической системы. Электростатические преобразователи были предложены Эдисоном и Долбье. Однако, первый микрофон электростатической системы создан Вентом (E.C. Wente. Phys. Rev., Vol. 10., pp. 39-63, July, 1917).

Микрофон представляет собой конденсатор, образованный массивным основанием и тонкой мембраной, изолированной от основания прокладкой (см. рис. 2). На этот конденсатор через резистор R подано поляризующее напряжение U= .

Под действием звуковых волн мембрана совершает колебательное движение. Расстояние между мембраной и основанием d изменяется. Следовательно, изменяется ёмкость микрофона С. Относительное изменение ёмкости микрофона

Период звуковых колебаний обычно меньше постоянной времени . Поэтому заряд конденсатора не успевает измениться за время одного периода, т.е.

.

Но тогда

и

Изменения напряжения на конденсаторе пропорциональны изменениям расстояния между обкладками конденсатора. Эти изменения и являются э.д.с. микрофона е.

Если колебания происходят по гармоническому закону

то скорость колебаний

Коэффициент электромеханической связи

Чувствительность микрофона:

Чтобы чувствительность микрофона не зависела от частоты необходимо, чтобы

Это возможно, если резонансная частота мембраны выше верхней частоты рабочего диапазона частот. Тогда осевая чувствительность микрофона

. напряженность электрического поля между обкладками микрофона

Пробивная напряженность электрического поля для воздуха равна 30 кВ/см. При величине зазора между обкладками d = 20 мкм пробой может наступить при напряжении U= = 60 В. По этому в конденсаторных микрофонах величина напряжения U= обычно не превышает 150 В ( в зависимости от размера d)/

При заданной резонансной частоте мембраны её масса должна быть как можно меньшей. Обычно мембрану изготовляют из дюраля или полимерной пленки, покрытой тонким слоем золота.

Частотная характеристика микрофонов отличается высокой равномерностью, поэтому их часто используют как измерительные.

Диапазон частот конденсаторных микрофонов от Гц до кГц с неравномерностью дБ до 10 кГц и дБ на более высоких частотах.

Недостатком конденсаторных микрофонов является необходимость подавать достаточно высокое напряжение на микрофон. От этого недостатка свободны электретные микрофоны, в которых электрическое поле создаётся электретной пленкой, применяемой в качестве материала мембраны. В последнее время электретные микрофоны получили широкое распространение благодаря небольшим габаритам и весу.

Микрофоны электростатической системы маркируются буквами: МК – конденсаторные микрофоны и МКЭ – электретные микрофоны.

Угольные микрофоны. Электромагнитный микрофон А. Белла оказался недостаточно чувствительным для практического применения в телефонной связи.и был вытеснен более чувствительным угольным микрофоном. Угольный микрофон был создан благодаря экспериментам Эдисона, Берлинера и Юза (1-й патент выдан Эдисону 27.04.1877.). Микрофон состоит из корпуса, заполненного угольным порошком и мембраны из проводящего материала.

К корпусу и мембране через обмотку трансформатора приложено постоянное напряжение U=.

При воздействии на мембрану звуковых колебаний угольный порошок сжимается или отпускается мембраной, его сопротивление изменяется и изменяется ток в цепи микрофона.

Переменная составляющая тока создаёт во вторичной обмотке трансформатора полезный сигнал.

Частотная характеристика микрофона близка к оптимальной для передачи речи. Динамический диапазон ~ 30 дБ.

Нелинейные искажения микрофона могут достигать 15 – 20 %. Угольные микрофоны можно встретить в телефонных аппаратах выпуска прежних лет с маркировкой МК-10 или МК-16.

baza-referat.ru