Реферат История и устройство микрофонов. Реферат микрофон


Реферат Микрофон

скачать

Реферат на тему:

План:

    Введение
  • 1 История
  • 2 Устройство микрофона
  • 3 Классификация микрофонов
    • 3.1 Типы микрофонов по принципу действия
    • 3.2 Функциональные виды микрофонов
  • 4 Характеристики микрофонов
    • 4.1 Чувствительность
    • 4.2 Амплитудно-частотная характеристика
    • 4.3 Акустическая характеристика
    • 4.4 Характеристика направленности
      • 4.4.1 Ненаправленные микрофоны
      • 4.4.2 Микрофоны двустороннего направления
      • 4.4.3 Микрофоны одностороннего направления
    • 4.5 Уровень шумов
  • 5 Микрофон в искусстве
  • 6 В фольклоре
  • Источники

Введение

Микрофо́н (от греч. μικρός — маленький, φωνη — звук) — электроакустический прибор, преобразовывающий звуковые колебания в колебания электрического тока, устройство ввода. Служит первичным звеном в цепочке звукозаписывающего тракта или звукоусиления. Микрофоны используются во многих устройствах, таких как телефоны и магнитофоны, в звукозаписи и видеозаписи, на радио и телевидении, для радиосвязи, а также для ультразвукового контроля и измерения.

1. История

Вначале наибольшее распространение получил угольный микрофон Эдисона, об изобретении которого также независимо заявляли Г.Махальский в 1878 и П. М. Голубицкий в 1883. Угольный микрофон до сих пор используется в аппаратах аналоговой телефонии. Действие его основывается на изменении сопротивления между зёрнами угольного порошка при изменении давления на их совокупность.

Конденсаторный микрофон был изобретён американским учёным Э. Венте в 1917 году. В нём звук воздействует на тонкую металлическую мембрану, изменяя расстояние между мембраной и металлическим корпусом. Тем самым образуемый мембраной и корпусом конденсатор меняет ёмкость. Если подвести к пластинам постоянное напряжение, изменение ёмкости вызовет ток через конденсатор, тем самым образуя электрический сигнал во внешней цепи.

Более массовыми стали динамические микрофоны, отличающиеся от угольных гораздо лучшей линейностью характеристик и хорошими частотными свойствами, а от конденсаторных — более приемлемыми электрическими свойствами.

Первым динамическим микрофоном стал изобретённый в 1924 году немецкими учёными Э. Герлахом и В. Шоттки электродинамический микрофон ленточного типа. Они расположили в магнитном поле гофрированную ленточку из очень тонкой (ок. 2 мкм) алюминиевой фольги. Такие микрофоны до сих пор применяются в студийной записи благодаря чрезвычайно высоким частотным характеристикам, однако их чувствительность невелика, выходное сопротивление очень мало (доли Ома), что значительно осложняло проектирование усилителей. Кроме того, достаточная чувствительность достижима только при значительной площади ленточки (а значит, и размерах магнита), в результате такие микрофоны имеют большие размеры и массу по сравнению со всеми остальными типами.

Пьезоэлектрический микрофон, сконструированный советскими учёными С. Н. Ржевкиным и А. И. Яковлевым в 1925 году, имеет в качестве датчика звукового давления пластинку из вещества, обладающего пьезоэлектрическими свойствами. Работа в качестве датчика давления позволила создать первые гидрофоны и записать сверхнизкочастотные звуки, характерные для морских обитателей.

В 1931 году американские учёные Э. Венте и А. Терас изобрели динамический микрофон с катушкой, приклееной к тонкой мембране из полистирола или фольги. В отличие от ленточного, он имел существенно более высокое выходное сопротивление (десятки Ом и сотни кило Ом), мог быть изготовлен в меньших размерах и является обратимым.

Совершенствование характеристик именно этих микрофонов, в сочетании с совершенствованием звукоусилительной и звукозаписывающей аппаратуры, позволило развиться индустрии звукозаписи. Создание малых по размеру (даже несмотря на массу постоянного магнита, необходимого для работы микрофона), а также чрезвычайно чувствительных и узконаправленных динамических микрофонов в заметной степени изменило представление о приватности и породило ряд изменений в законодательстве (в частности, о применении подслушивающих устройств).

Тогда же разработанные электромагнитные микрофоны, в отличие от электродинамических, имеют закреплённый на мембране постоянный магнит и неподвижную катушку. Благодаря отсутствию жёстких требований к массе катушки (характерном для динамических микрофонов) такие микрофоны делались высокоомными, а также порой имели многоотводные катушки, что делало их более универсальными. Такие микрофоны, наряду с пьезоэлектрическими, позволили создать эффективные слуховые аппараты, а также ларингофоны.

Электретный микрофон, изобретённый японским учёным Ёгути в начале 20-х гг. XX века по принципу действия и конструкции близок к конденсаторному, однако в качестве неподвижной обкладки конденсатора и источника постоянного напряжения выступает пластина из электрета. Долгое время такие микрофоны были относительно дороги, а их очень высокое выходное сопротивление (как и конденсаторных, единицы мегаОм и выше) заставляло применять исключительно ламповые схемы.

Создание полевых транзисторов привело к появлению чрезвычайно эффективных, миниатюрных и лёгких электретных микрофонов, совмещённых с собранным в том же корпусе предусилителем на полевом транзисторе.

2. Устройство микрофона

Принцип действия микрофона с подвижной катушкой

Конденсаторный микрофон Октава МК-319 внутри

Принцип работы микрофона заключается в том, что давление звуковых колебаний воздуха, воды или твердого вещества действует на тонкую мембрану микрофона. В свою очередь, колебания мембраны возбуждают электрические колебания; в зависимости от типа микрофона для этого используются явление электромагнитной индукции, изменение ёмкости конденсаторов или пьезоэлектрический эффект.

Свойства акустико-механической системы сильно зависят от того, воздействует ли звуковое давление на одну сторону диафрагмы (микрофон давления) или на обе стороны, а во втором случае от того, симметрично ли это воздействие (микрофон градиента давления) или на одну из сторон диафрагмы действуют колебания, непосредственно возбуждающие её, а на вторую — прошедшие через какое-либо механическое или акустическое сопротивление или систему задержки времени (асимметричный микрофон градиента давления).

Большое влияние на характеристики микрофона оказывает его механоэлектрическая часть.

3. Классификация микрофонов

Конденсаторный микрофон Октава МК-319

Динамический микрофон Sennheiser

3.1. Типы микрофонов по принципу действия

  • Динамический микрофон
    • Катушечный
    • Ленточный
  • Конденсаторный микрофон
    • Электретный микрофон — разновидность конденсаторного микрофона.
  • Угольный микрофон
  • Пьезомикрофон

Сравнительные характеристики основных типов микрофонов (устаревшие данные из «БСЭ» 1967 год.):

Тип микрофона диапазон воспроизводимых частот, гц неравномерность частотной характеристики, дб осевая чувствительность на частоте 1000 гц, мв×м2/н
Угольный 300—3400 20 1000
Электродинамический катушечного типа 100—10 000 (1 класса)

30—15 000 (высшего класса)

12 0,5

~1,0

Электродинамический ленточного типа 50—10 000 (1 класса)

70—15 000 (высшего класса)

10 1

1,5

Конденсаторный 30—15 000 5 5
Пьезоэлектрический 100—5 000 15 50
Электромагнитный 300—5 000 20 5

3.2. Функциональные виды микрофонов

  • Студийный микрофон
  • Измерительный микрофон («искусственное ухо»)
  • Микрофонный капсюль для телефонных аппаратов
  • Микрофон для применения в радиогарнитурах
  • Микрофон для скрытного ношения
  • Ларингофон
  • Гидрофон

4. Характеристики микрофонов

Схематическое обозначение микрофона

Микрофоны любого типа оцениваются следующими характеристиками:

  1. чувствительность
  2. амплитудно-частотная характеристика
  3. акустическая характеристика микрофона
  4. характеристика направленности
  5. уровень собственных шумов микрофона

4.1. Чувствительность

Чувствительность микрофона определяется отношением напряжения на выходе микрофона к звуковому давлению Р0 в свободном звуковом поле, т. е. при отсутствии сигнала. При распространении синусоидальной звуковой волны в направлении акустической оси микрофона, это направление называется осевой чувствительностью: M0 = U / P0(мВ/н/м²)

Акустическая ось совпадает с осью симметрии микрофона. Если конструкция микрофона не имеет оси симметрии, то направление акустической оси указывается в технических условиях. Чувствительность современных микрофонов составляет от 1-2 (динамические микрофоны) до 10-15 (конденсаторные микрофоны) мВ/Па

4.2. Амплитудно-частотная характеристика

АЧХ микрофонов Октава МК-319 и Shure SM58

Амплитудно-частотная характеристика (АЧХ), или просто частотная характеристика - это зависимость осевой чувствительности от частоты звуковых колебаний. Эта характеристика связана с зависимостью чувствительности микрофона от частоты звуковых колебаний. Неравномерность амплитудно-частотной характеристики измеряют в децибелах как отношение чувствительности микрофона на определенной частоте к чувствительности на средней частоте, например 1000 Гц.

4.3. Акустическая характеристика

Влияние звукового поля микрофона оценивается акустической характеристикой, которая определяется отношением силы, действующей на диафрагму микрофона, и звуковым давлением в свободном звуковом поле: A = F/P, а потому, что чувствительность микрофона M = U/P можно представить как U/P = U/F • F/P и выразить через А. Тогда получим: M = A • U / F. Отношение напряжения на выходе микрофона к силе, действующей на диафрагму U/F, характеризует микрофон как электромеханический преобразователь. Акустическая характеристика определяет характеристику направленности микрофона. По виду акустической характеристики, а следовательно и характеристики направленности, отличают три типа микрофонов, как приемников звука: приемники давления; градиента давления; комбинированые.

4.4. Характеристика направленности

Направленность микрофонов. Представление в полярных координатах
приемники давления
Ненаправленный
приемники градиента давления
Двунаправленный«Восьмерка»
комбинированные
Кардиоид
Гиперкардиоид

Характеристикой направленности называют зависимость чувствительности микрофона от направления падения звуковой волны по отношению к оси микрофона. Она определяется отношением чувствительности Мα при падении звуковой волны под углом α относительно акустической оси микрофона к его осевой чувствительности:

φ = Mα/M0

Направленность микрофона означает его возможное расположение относительно источников звука. Если чувствительность не зависит от угла падения звуковой волны, т. е. φ = 1, то микрофон называют ненаправленным, и источники звука могут располагаться вокруг него. А если чувствительность зависит от угла, то источники звука должны располагаться в пространственном угле, в пределах которого чувствительность микрофона мало отличается от осевой чувствительности.

4.4.1. Ненаправленные микрофоны

В микрофонах - приемниках давления сила, действующая на диафрагму, определяется звуковым давлением у поверхности диафрагмы. Звуковое поле может действовать только на одну сторону диафрагмы. Вторая сторона конструктивно защищена. Если размеры микрофона малы по сравнению с длиной звуковой волны, то микрофон не изменяет звукового поля. А если больше, тогда за счет дифракции звуковых волн давление меняется. На низких частотах от 1000 Гц и ниже такие микрофоны не имеют направленного действия.

Ненаправленные микрофоны удобны, например, для записи разговора людей, сидящих за круглым столом.

4.4.2. Микрофоны двустороннего направления

В микрофонах - приемниках градиента давления сила, действующая на движущуюся систему микрофона, определяется разностью звуковых давлений на двух сторонах диафрагмы. То есть, звуковое поле действует на две стороны диафрагмы. Характеристика направленности имеет вид восьмерки.

Двусторонние микрофоны удобны, например, для записи разговора двух собеседников, сидящих друг напротив друга.

4.4.3. Микрофоны одностороннего направления

Односторонняя направленность достигается в микрофонах комбинированного типа. Их диаграммы направленности близки по форме к кардиоиде, поэтому нередко их называют кардиоидными. Модификации микрофонов, имеющих еще меньшую направленность, чем кардиоидные, называют суперкардиоидными и гиперкардиоидными, однако эти разновидности, в отличие от кардиоидного микрофона, также чувствительны к сигналам с противоположной стороны.

Эти микрофоны имеют определенные преимущества в эксплуатации: источник звука располагается с одной стороны микрофона в пределах достаточно широкого пространственного угла, а звуки, распространяющиеся за его пределами микрофон не воспринимает.

4.5. Уровень шумов

Уровень собственных шумов микрофона Nш определяется отношением эффективного напряжения на выходе микрофона при отсутствии звукового поля Uш к напряжению U1 при наличии звукового поля с эффективным давлением в 0,1 н/м²:

Nш = 20 lg Uш/U1, дБ.

Напряжение Uш обусловлено главным образом тепловыми шумами в опорах электрической схемы микрофона.

5. Микрофон в искусстве

6. В фольклоре

Тема подслушивающих устройств получила отражение в общеизвестном устном народном творчестве.

 — А у нас в квартире газ. А у вас?  — А у нас — микрофон. Вон, вон и вон! Говорили, что стены американского посольства в Москве сделаны из микробетона — смеси бетона с микрофонами.

Источники

  • БСЭ. Статья «Микрофон»
  • Микрофон // Фотокинотехника: Энциклопедия / Главный редактор Е. А. Иофис. — М.: Советская энциклопедия, 1981.

www.wreferat.baza-referat.ru

Реферат: "Микрофон: устройство, принцип действия, применение"

Выдержка из работы

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ДАЛЬНЕВОСТОЧНЫЙ ГОСУДАРСТВЕННЫЙ

ГУМАНИТАРНЫЙ УНИВЕРСИТЕТ"

Исторический факультет

Реферат

по дисциплине «Технические и аудиовизуальные средства обучения»

Микрофон, устройство, принцип действия, применение.

Выполнила:

студентка 1 курса

Мульнючкина М.В.

Проверил:

К. ф-м.н. Я.И. Микицей

Хабаровск, 2011 г.

Содержание

Введение

1. История микрофона

2. Устройство микрофона

3. Применение

Заключение

Список литературы

Введение

Для обработки и передачи на расстояния звуковой и визуальной информации звук и оптическое изображение необходимо представить в форме электрических сигналов.

Звук преобразуют в электрический сигнал посредством аппаратов, названных микрофоном. Микрофон это устройство для преобразования и усиления звуковых частот.

Микрофон решает такую проблему, как громкость голоса. С помощью микрофона привлекается внимание в больших помещениях.

1. История микрофона

Вначале наибольшее распространение получил угольный микрофон Эдисона, об изобретении которого также независимо заявляли Г. Махальский в 1878 и П. М. Голубицкий в 1883. Угольный микрофон до сих пор используется в аппаратах аналоговой телефонии. Действие его основывается на изменении сопротивления между зёрнами угольного порошка при изменении давления на их совокупность.

Конденсаторный микрофон был изобретён американским учёным Э. Венте в 1917 году. В нём звук воздействует на тонкую металлическую мембрану, изменяя расстояние между мембраной и металлическим корпусом. Тем самым образуемый мембраной и корпусом конденсатор меняет ёмкость. Если подвести к пластинам постоянное напряжение, изменение ёмкости вызовет ток через конденсатор, тем самым образуя электрический сигнал во внешней цепи.

Более массовыми стали динамические микрофоны, отличающиеся от угольных гораздо лучшей линейностью характеристик и хорошими частотными свойствами, а от конденсаторных -- более приемлемыми электрическими свойствами.

Первым динамическим микрофоном стал изобретённый в 1924 году немецкими учёными Э. Герлахом и В. Шоттки электродинамический микрофон ленточного типа. Они расположили в магнитном поле гофрированную ленточку из очень тонкой (ок. 2 мкм) алюминиевой фольги. Такие микрофоны до сих пор применяются в студийной записи благодаря чрезвычайно высоким частотным характеристикам, однако их чувствительность невелика, выходное сопротивление очень мало (доли Ома), что значительно осложняло проектирование усилителей. Кроме того, достаточная чувствительность достижима только при значительной площади ленточки (а значит, и размерах магнита), в результате такие микрофоны имеют большие размеры и массу по сравнению со всеми остальными типами.

Пьезоэлектрический микрофон, сконструированный советскими учёными С. Н. Ржевкиным и А. И. Яковлевым в 1925 году, имеет в качестве датчика звукового давления пластинку из вещества, обладающего пьезоэлектрическими свойствами. Работа в качестве датчика давления позволила создать первые гидрофоны и записать сверхнизкочастотные звуки, характерные для морских обитателей.

В 1931 году американские учёные Э. Венте и А. Терас изобрели динамический микрофон с катушкой, приклееной к тонкой мембране из полистирола или фольги. В отличие от ленточного, он имел существенно более высокое выходное сопротивление (десятки Ом и сотни кило Ом), мог быть изготовлен в меньших размерах и является обратимым.

Совершенствование характеристик именно этих микрофонов, в сочетании с совершенствованием звукоусилительной и звукозаписывающей аппаратуры, позволило развиться индустрии звукозаписи. Создание малых по размеру (даже несмотря на массу постоянного магнита, необходимого для работы микрофона), а также чрезвычайно чувствительных и узконаправленных динамических микрофонов в заметной степени изменило представление о приватности и породило ряд изменений в законодательстве (в частности, о применении подслушивающих устройств).

Тогда же разработанные электромагнитные микрофоны, в отличие от электродинамических, имеют закреплённый на мембране постоянный магнит и неподвижную катушку. Благодаря отсутствию жёстких требований к массе катушки (характерном для динамических микрофонов) такие микрофоны делались высокоомными, а также порой имели многоотводные катушки, что делало их более универсальными. Такие микрофоны, наряду с пьезоэлектрическими, позволили создать эффективные слуховые аппараты, а также ларингофоны.

Электретный микрофон, изобретённый японским учёным Ёгути в начале 20-х гг. XX века по принципу действия и конструкции близок к конденсаторному, однако в качестве неподвижной обкладки конденсатора и источника постоянного напряжения выступает пластина из электрета. Долгое время такие микрофоны были относительно дороги, а их очень высокое выходное сопротивление (как и конденсаторных, единицы мегаОм и выше) заставляло применять исключительно ламповые схемы.

Создание полевых транзисторов привело к появлению чрезвычайно эффективных, миниатюрных и лёгких электретных микрофонов, совмещённых с собранным в том же корпусе предусилителем на полевом транзисторе.

2. Устройство микрофона

Принцип действия микрофона с подвижной катушкой

Конденсаторный микрофон Октава МК-319 внутри

Принцип работы микрофона заключается в том, что давление звуковых колебаний воздуха, воды или твердого вещества действует на тонкую мембрану микрофона. В свою очередь, колебания мембраны возбуждают электрические колебания; в зависимости от типа микрофона для этого используются явление электромагнитной индукции, изменение ёмкости конденсаторов или пьезоэлектрический эффект.

Свойства акустико-механической системы сильно зависят от того, воздействует ли звуковое давление на одну сторону диафрагмы (микрофон давления) или на обе стороны, а во втором случае от того, симметрично ли это воздействие (микрофон градиента давления) или на одну из сторон диафрагмы действуют колебания, непосредственно возбуждающие её, а на вторую -- прошедшие через какое-либо механическое или акустическое сопротивление или систему задержки времени (асимметричный микрофон градиента давления).

Большое влияние на характеристики микрофона оказывает его механоэлектрическая часть

Динамический (электродинамический) микрофон -- наиболее распространённый тип конструкции микрофона. Он представляет собой мембрану, соединённую с лёгким токопроводом, который помещен в сильное магнитное поле, создаваемое постоянным магнитом. Колебания давления воздуха (звук) воздействуют на мембрану и приводят в движение токопровод. Когда токопровод пересекает силовые линии магнитного поля, в нем наводится ЭДС индукции. ЭДС индукции пропорциональна как амплитуде колебаний мембраны, так и частоте колебаний.

В отличие от конденсаторных, динамические микрофоны не требуют фантомного питания.

Динамический микрофон практически аналогичен по конструкции динамической головке (динамику, громкоговорителю). Это, в сущности, «обращение» динамика: вместо подачи напряжения на катушку динамика для создания звука с этой катушки снимается напряжение, созданное внешним звуком.

В ранней радиолюбительской практике динамики нередко использовались в качестве динамического микрофона, а некоторые радиостанции специально проектировались под использование в качестве и микрофона, и динамика одного устройства. Однако обычно динамик и микрофон имеют разное электрическое сопротивление, поэтому при использовании одного вместо другого можно необратимо испортить устройство.

Динамический микрофон конструктивно несколько отличается от динамика: у него другая конструкция мембраны, катушка содержит бомльшее количество витков и намотана гораздо более тонким проводом.

Классификация по типу проводника

В электродинамическом микрофоне катушечного типа применена диафрагма, связанная с катушкой индуктивности, находящейся в кольцевом зазоре магнитной системы. При колебаниях диафрагмы под действием звуковой волны витки катушки пересекают магнитные силовые линии и в катушке наводится эдс, создающая переменное напряжение. Такой микрофон надёжен в эксплуатации.

В электродинамическом микрофоне ленточного типа вместо катушки в магнитном поле располагается гофрированная ленточка из алюминиевой фольги. Такой микрофон применяется главным образом в студиях звукозаписи.

Конденсамторный микрофомн -- тип конструкции микрофона.

Представляет собой конденсатор, одна из обкладок которого выполнена из эластичного материала (обычно полимерная плёнка с нанесённой металлизацией), которая при звуковых колебаниях изменяет ёмкость конденсатора. Если конденсатор заряжен, то изменение ёмкости конденсатора приводит к изменению напряжения, которое и является полезным сигналом с микрофона. Для работы такого микрофона между обкладками должно быть приложено поляризующее напряжение, 60−80 вольт в более старых микрофонах, а в моделях после 60−70х годов 48 вольт. Такое напряжение питания в настоящее время стало стандартом. Именно с таким фантомным питанием выпускаются предусилители и звуковые карты. Конденсаторный микрофон имеет очень высокое выходное сопротивление. В связи с этим, в непосредственной близости к микрофону (внутри его корпуса) располагают предусилитель с высоким (порядка 1 ГОм) входным сопротивлением, выполненный на электронной лампе или полевом транзисторе. Как правило, напряжение для поляризации и питания предусилителя подаётся по сигнальным проводам (фантомное питание).

Конденсаторные микрофоны обладают весьма равномерной амплитудно-частотной характеристикой и обеспечивают высококачественный захват звука, в связи с чем широко используются в студиях звукозаписи, на радио и телевидении. Недостатками их являются высокая стоимость, необходимость во внешнем питании и высокая чувствительность к ударам и климатическим воздействиям -- влажности воздуха и перепадам температуры, что не позволяет использовать их в полевых условиях.

Существует тип конденсаторного микрофона -- электретный микрофон, который свободен от большинства перечисленных недостатков

Электремтный микрофомн -- разновидность конденсаторного микрофона.

Принцип действия электретного конденсаторного микрофона основан на способности некоторых диэлектрических материалов (электретов) сохранять поверхностную неоднородность распределения заряда в течение длительного времени.

Тонкая плёнка из гомоэлектрета помещается в зазор конденсаторного микрофона (то есть конденсатора, у которого одна из обкладок (мембрана) имеет возможность перемещаться под действием внешнего акустического сигнала) либо наносится на одну из обкладок. Это приводит к появлению некоторого постоянного заряда конденсатора. При изменении ёмкости, вследствие смещения мембраны, на конденсаторе проявляется изменение напряжения, соответствующее акустическому сигналу.

Принцип действия гетероэлектретного микрофона

В таком микрофоне сама гетероэлектретная плёнка служит мембраной. При её деформации на её поверхностях возникают разноимённые заряды, которые можно зарегистрировать, расположив электроды непосредственно на поверхности плёнки (на поверхность напыляют тонкий слой металла (алюминий, золото, серебро и т. п.).

Особенности подключения

Угольный микрофон -- один из первых типов микрофонов. Угольный микрофон содержит угольный порошок, размещённый между двумя металлическими пластинами и заключённый в герметичную капсулу. Стенки капсулы или одна из металлических пластин соединяется с мембраной. При изменении давления на угольный порошок изменяется площадь контакта между отдельными зёрнышками угля, и, в результате, изменяется сопротивление между металлическими пластинами. Если пропускать между пластинами постоянный ток, напряжение между пластинами будет зависеть от давления на мембрану.

3. Применение

Угольный микрофон из телефонного аппарата

Угольный микрофон практически не требует усиления сигнала, сигнал с его выхода можно подавать непосредственно на высокоомный наушник или громкоговоритель. Из-за этого свойства угольные микрофоны использовались до недавнего времени в телефонных аппаратах, их использование освобождало телефонный аппарат от дорогостоящих и дефицитных в то время полупроводниковых деталей либо громоздких, хрупких и энергоёмких усилителей на радиолампах. Классический телефонный аппарат с дисковым номеронабирателем обычно содержит угольный микрофон (однако, в аппаратах более поздних лет выпуска часто применяются динамические или электретные микрофоны, часто объединенные в единую конструкцию с усилителем, взаимозаменяемую с угольным микрофоном).

Однако угольный микрофон отличается плохой амплитудно-частотной характеристикой и узкой полосой пропускания (он нечувствителен к слишком низким и слишком высоким частотам), высоким уровнем шумов и искажений. Кроме того, в отличие от наиболее распространённого динамического микрофона, угольный требует питания постоянным током. Сейчас появились дешёвые и доступные полупроводниковые устройства, которые позволяют использовать микрофоны других типов. Поэтому в современных устройствах угольные микрофоны практически не применяются.

Типичная схема предусилителя на встроенном полевом транзисторе. Внешнее напряжение питания подаётся на U+; отделённая конденсатором переменная составляющая сигнала снимается с «Output»; резистор устанавливает режим работы транзистора и выходной импеданс.

В отличие от динамических микрофонов, имеющих низкое электрическое сопротивление катушки (~50Ом? 1 кОм), электретный микрофон имеет чрезвычайно высокий импеданс (имеющий емкостный характер, порядка десятков пФ), что вынуждает подключать их к усилителям с высоким входным сопротивлением. В конструкцию практически всех электретных микрофонов входит предусилитель («преобразователь сопротивления», «согласователь импеданса») на полевых транзисторах, реже на миниатюрных радиолампах с входным сопротивлением порядка 1 ГОм и выходным сопротивлением в сотни Ом, находящийся в непосредственной близости от капсюля. Поэтому, несмотря на отсутствие необходимости в поляризующем напряжении, такие микрофоны требуют внешнего источника электропитания.

Функциональные виды микрофонов

· Студийный микрофон

· Измерительный микрофон («искусственное ухо»)

· Микрофонный капсюль для телефонных аппаратов

· Микрофон для применения в радиогарнитурах

· Микрофон для скрытного ношения

· Ларингофон

· Гидрофон

Характеристики микрофонов

Схематическое обозначение микрофона

Микрофоны любого типа оцениваются следующими характеристиками:

1. чувствительность

2. амплитудно-частотная характеристика

3. акустическая характеристика микрофона

4. характеристика направленности

5. уровень собственных шумов микрофона

Чувствительность

Чувствительность микрофона определяется отношением напряжения на выходе микрофона к звуковому давлению Р0 в свободном звуковом поле, т. е. при отсутствии сигнала. При распространении синусоидальной звуковой волны в направлении акустической оси микрофона, это направление называется осевой чувствительностью: M0 = U / P0(мВ/н/м?)

Акустическая ось совпадает с осью симметрии микрофона. Если конструкция микрофона не имеет оси симметрии, то направление акустической оси указывается в технических условиях. Чувствительность современных микрофонов составляет от 1−2 (динамические микрофоны) до 10−15 (конденсаторные микрофоны) мВ/Па

Амплитудно-частотная характеристика

АЧХ микрофонов Октава МК-319 и Shure SM58

Амплитудно-частотная характеристика (АЧХ), или просто частотная характеристика — это зависимость осевой чувствительности от частоты звуковых колебаний. Эта характеристика связана с зависимостью чувствительности микрофона от частоты звуковых колебаний. Неравномерность амплитудно-частотной характеристики измеряют в децибелах как отношение чувствительности микрофона на определенной частоте к чувствительности на средней частоте, например 1000 Гц.

Акустическая характеристика

Влияние звукового поля микрофона оценивается акустической характеристикой, которая определяется отношением силы, действующей на диафрагму микрофона, и звуковым давлением в свободном звуковом поле:

A = F/P,

а потому, что чувствительность микрофона

M = U/P

можно представить как

U/P = U/F * F/P

микрофон звук запись усиление

и выразить через А. Тогда получим:

M = A * U / F.

Отношение напряжения на выходе микрофона к силе, действующей на диафрагму U/F, характеризует микрофон как электромеханический преобразователь. Акустическая характеристика определяет характеристику направленности микрофона. По виду акустической характеристики, а следовательно и характеристики направленности, отличают три типа микрофонов, как приемников звука: приемники давления; градиента давления; комбинированные.

Характеристика направленности

Направленность микрофонов. Представление в полярных координатах

приемники давления

Ненаправленный

приемники градиента давления

Двунаправленный«Восьмерка»

комбинированные

Кардиоид

Гиперкардиоид

Характеристикой направленности называют зависимость чувствительности микрофона от направления падения звуковой волны по отношению к оси микрофона. Она определяется отношением чувствительности М? при падении звуковой волны под углом? относительно акустической оси микрофона к его осевой чувствительности:

? = M?/M0

Направленность микрофона означает его возможное расположение относительно источников звука. Если чувствительность не зависит от угла падения звуковой волны, т. е.? = 1, то микрофон называют ненаправленным, и источники звука могут располагаться вокруг него. А если чувствительность зависит от угла, то источники звука должны располагаться в пространственном угле, в пределах которого чувствительность микрофона мало отличается от осевой чувствительности.

Ненаправленные микрофоны

В микрофонах — приемниках давления сила, действующая на диафрагму, определяется звуковым давлением у поверхности диафрагмы. Звуковое поле может действовать только на одну сторону диафрагмы. Вторая сторона конструктивно защищена. Если размеры микрофона малы по сравнению с длиной звуковой волны, то микрофон не изменяет звукового поля. А если больше, тогда за счет дифракции звуковых волн давление меняется. На низких частотах от 1000 Гц и ниже такие микрофоны не имеют направленного действия.

Ненаправленные микрофоны удобны, например, для записи разговора людей, сидящих за круглым столом.

Микрофоны двустороннего направления

В микрофонах — приемниках градиента давления сила, действующая на движущуюся систему микрофона, определяется разностью звуковых давлений на двух сторонах диафрагмы. То есть, звуковое поле действует на две стороны диафрагмы. Характеристика направленности имеет вид восьмерки.

Двусторонние микрофоны удобны, например, для записи разговора двух собеседников, сидящих друг напротив друга.

Микрофоны одностороннего направления

Односторонняя направленность достигается в микрофонах комбинированного типа. Их диаграммы направленности близки по форме к кардиоиде, поэтому нередко их называют кардиоидными. Модификации микрофонов, имеющих еще меньшую направленность, чем кардиоидные, называют суперкардиоидными и гиперкардиоидными, однако эти разновидности, в отличие от кардиоидного микрофона, также чувствительны к сигналам с противоположной стороны.

Эти микрофоны имеют определенные преимущества в эксплуатации: источник звука располагается с одной стороны микрофона в пределах достаточно широкого пространственного угла, а звуки, распространяющиеся за его пределами микрофон не воспринимает.

Уровень шумов

Уровень собственных шумов микрофона Nш определяется отношением эффективного напряжения на выходе микрофона при отсутствии звукового поля Uш к напряжению U1< /sub при наличии звукового поля с эффективным давлением в 0,1 н/м?:

Nш = 20 lg Uш/U1, дБ.

Напряжение Uш обусловлено главным образом тепловыми шумами в опорах электрической схемы микрофона.

Заключение

Можно сделать несколько выводов. Микрофон нужен для усиления звука. Он необходим для того, чтобы звук было слышно и слышно отчетливо.

Принцип работы микрофона заключается в том, что давление звуковых колебаний воздуха, воды или твердого вещества действует на тонкую мембрану микрофона. В свою очередь, колебания мембраны возбуждают электрические колебания; в зависимости от типа микрофона для этого используются явление электромагнитной индукции, изменение ёмкости конденсаторов или пьезоэлектрический эффект.

Очень много видов микрофона. В зависимости от видов микрофонов принцип действия разный. Их применение тоже, например, с помощью двустороннего микрофона можно записывать голос сабеседника. Их применение зависит от вида.

Список литературы

1. Коджаспирова, Г. М. Технические средства обучения и методика их применения — М, 2001

2. Воронин Ю. А. Технические и аудиовизуальные средства обучения: Учебное пособие / Ю. А. Воронин. — Воронеж: Воронежский государственный педагогический университет, 2001.

Показать Свернуть

referat.bookap.info

Реферат - Микрофоны. - Информатика

Обычно микрофоны не входят в комплекты звуковых плат, но они могут понадобиться при записи речи в файл .wav. Разъем микрофона (обычно диаметром 1/8 дюйма) должен соответствовать гнезду на звуковой плате. В большинстве микрофонов устанавливается выключатель (для отключения выходного сигнала).

Как и акустические системы, микрофоны имеют свои частотные характеристики, но эти параметры для них не столь важны, поскольку частотный диапазон человеческого голоса ограничен. Если вы собираетесь записывать только речь, можете обойтись дешевым микрофоном с узкой полосой рабочих частот. Частотный диапазон дорогих микрофонов намного шире диапазона человеческой речи.

Для записи музыки лучше приобрести дорогой высококачественный микрофон, надо только помнить, что при 8-разрядной звуковой плате музыкальная запись, сделанная как с дорогого, так и с дешевого микрофона, окажется одинаково плохой.

Микрофон должен соответствовать условиям записи. При работе в шумном офисе лучше пользоваться направленным микрофоном; это позволит избавиться от посторонних звуков. Для записи общей беседы нужен ненаправленный микрофон. Если вы хотите, чтобы руки оставались свободными, воспользуйтесь микрофоном на подставке.

Микрофон должен иметь характеристики электрического сопротивления, подходящие к определенной модели аудиоадаптера.

При использовании программ распознавания речи, например Dragon Naturally Speaking, Via Voice от IBM, Philips FreeSpeech и др., используйте микрофон, поставляемый в коробочной версии программы или приобретите модель, рекомендуемую производителем программы. Если при распознавании голоса возникли определенные проблемы, запустите программу настройки микрофона. В некоторых моделях микрофонов для улучшения качества звука дополнительно используется батарейка; она должна быть в работоспособном состоянии.

Задание:

  1. Изучить теоретический материал.
  2. Составить краткий конспект в тетради.
  3. Оформить отчет.

Содержание отчёта:

Отчёт выполняется в журнале по практическим работам и должен содержать:

17. Номер и тему практической работы.

18. Цель работы.

19. Описание выполненного задания.

20. Вывод.

Контрольные вопросы:

1. Какие основные функции выполняет звуковая система ПК?

2. Какие основные компоненты входят в состав звуковой системы ПК?

3. Исходя из каких соображений выделяется частота дискретизации сигнала в процессе аналого-цифрового преобразования?

4. Перечислите основные этапы аналого-цифрового и цифроаналогового преобразования.

5. Какие основные параметры характеризуют модуль записи и воспро­изведения звука?

6. Какие применяют методы синтеза звука?

7. Какие функции выполняет модуль микшера и что относится к чис­лу его основных характеристик?

8. В чем отличие пассивной акустической системы от активной?

2.9 Практическая работа № 9

www.ronl.ru

Микрофон и принцип его действия — реферат

Министерство образования  РС(Я)

Северо-Восточный Федеральный  Университет им.М.К.Аммосова

 

 

 

 

 

 

 

 

 

 

РЕФЕРАТ

                                                     на тему:

МИКРОФОН И ПРИНЦИП  ЕГО ДЕЙСТВИЯ

 

 

 

 

 

Выполнил

Проверил:

 

 

2012, г. Якутск 

Содержание:

  1. Термин……………………….……………………………………...3
  2. История………………..……………………………………………3
  3. Принцип работы…………………………………………………....5
  4. Чувствительность………………………….……………………….5
  5. Частотная характеристика чувствительности…………………....6
  6. Акустическая характеристика…………………………………….6
  7. Характеристика направленности…………………………………6
  8. Ненаправленные микрофоны……………………………………..7
  9. Микрофоны двустороннего направления………………………..7
  10. Микрофоны одностороннего направления……………………...7
  11. Уровень шумов……………………………………………………..8
  12. Частотные диапозоны……………………………………………...8
  13. Распространение радиоволн…………………………………….10
  14. Особые эффекты………..………………………………………...10
  15. Использование широковещательной потоковой передачи…..10
  16. Гражданская радиосвязь…………………………………………11
  17. Радиолюбительская связь………………………………………..12
  18. Список литературы……………………………………………….13

 

 

 

 

 

 

 

 

 

 

 

 

Термин

Микрофо́н (от греч. μικρός — маленький, φωνη — голос) — электроакустический прибор, преобразовывающий звуковые колебания в колебания электрического тока, устройство ввода. Служит первичным звеном в цепочке звукозаписывающего тракта или звукоусиления. Микрофоны используются во многих устройствах, таких как телефоны и магнитофоны, в звукозаписи и видеозаписи, на радио и телевидении, для радиосвязи, а также для ультразвукового контроля и измерения. 

История

Вначале наибольшее распространение  получил угольный микрофон Эдисона, об изобретении которого также независимо заявляли Г.Махальский в 1878 и П. М. Голубицкий в 1883. Угольный микрофон до сих пор используется в аппаратах аналоговой телефонии. Действие его основывается на изменении сопротивления между зёрнами угольного порошка при изменении давления на их совокупность.

Конденсаторный микрофон был изобретён американским учёным Э. Венте в 1917 году. В нём звук воздействует на тонкую металлическую мембрану, изменяя расстояние между мембраной  и металлическим корпусом. Тем  самым образуемый мембраной и  корпусом конденсатор меняет ёмкость. Если подвести к пластинам постоянное напряжение, изменение ёмкости вызовет  ток через конденсатор, тем самым  образуя электрический сигнал во внешней цепи.

Более массовыми стали  динамические микрофоны, отличающиеся от угольных гораздо лучшей линейностью  характеристик и хорошими частотными свойствами, а от конденсаторных —  более приемлемыми электрическими свойствами.

Первым динамическим микрофоном стал изобретённый в 1924 году немецкими  учёными Э. Герлахом и В. Шоттки электродинамический микрофон ленточного типа. Они расположили в магнитном поле гофрированную ленточку из очень тонкой (ок. 2 мкм) алюминиевой фольги. Такие микрофоны до сих пор применяются в студийной записи благодаря чрезвычайно высоким частотным характеристикам, однако их чувствительность невелика, выходное сопротивление очень мало (доли Ома), что значительно осложняло проектирование усилителей. Кроме того, достаточная чувствительность достижима только при значительной площади ленточки (а значит, и размерах магнита), в результате такие микрофоны имеют большие размеры и массу по сравнению со всеми остальными типами.

Пьезоэлектрический микрофон, сконструированный советскими учёными  С. Н. Ржевкиным и А. И. Яковлевым в 1925 году, имеет в качестве датчика звукового давления пластинку из вещества, обладающего пьезоэлектрическими свойствами. Работа в качестве датчика давления позволила создать первые гидрофоны и записать сверхнизкочастотные звуки, характерные для морских обитателей.

В 1931 году американские учёные Э. Венте и А. Терас изобрели динамический микрофон с катушкой, приклеенной к тонкой мембране из полистирола или фольги. В отличие от ленточного, он имел существенно более высокое выходное сопротивление (десятки Ом и сотни килоОм), мог быть изготовлен в меньших размерах и является обратимым.

Совершенствование характеристик  именно этих микрофонов, в сочетании  с совершенствованием звукоусилительной и звукозаписывающей аппаратуры, позволило развиться индустрии звукозаписи. Создание малых по размеру (даже несмотря на массу постоянного магнита, необходимого для работы микрофона), а также чрезвычайно чувствительных и узконаправленных динамических микрофонов в заметной степени изменило представление о приватности и породило ряд изменений в законодательстве (в частности, о применении подслушивающих устройств).

Тогда же разработанные электромагнитные микрофоны, в отличие от электродинамических, имеют закреплённый на мембране постоянный магнит и неподвижную катушку. Благодаря отсутствию жёстких требований к массе катушки (характерном для динамических микрофонов) такие микрофоны делались высокоомными, а также порой имели многоотводные катушки, что делало их более универсальными. Такие микрофоны, наряду с пьезоэлектрическими, позволили создать эффективные слуховые аппараты, а также ларингофоны.

Электретный микрофон, изобретённый японским учёным Ёгути в начале 20-х гг. XX века, по принципу действия и конструкции близок к конденсаторному, однако в качестве неподвижной обкладки конденсатора и источника постоянного напряжения выступает пластина из электрета. Долгое время такие микрофоны были относительно дороги, а их очень высокое выходное сопротивление (как и конденсаторных, единицы мегаОм и выше) заставляло применять исключительно ламповые схемы.

Создание полевых транзисторов привело к появлению чрезвычайно  эффективных, миниатюрных и лёгких электретных микрофонов, совмещённых  с собранным в том же корпусе предусилителем на полевом транзисторе.

Принцип работы

Принцип работы микрофона  заключается в том, что давление звуковых колебаний воздуха, воды или  твёрдого вещества действует на тонкую мембрану микрофона. В свою очередь, колебания мембраны возбуждают электрические  колебания; в зависимости от типа микрофона для этого используются явление электромагнитной индукции, изменение ёмкости конденсаторов  или пьезоэлектрический эффект.

Свойства акустико-механической системы сильно зависят от того, воздействует ли звуковое давление на одну сторону диафрагмы (микрофон давления) или на обе стороны, а во втором случае от того, симметрично ли это  воздействие (микрофон градиента давления) или на одну из сторон диафрагмы  действуют колебания, непосредственно  возбуждающие её, а на вторую — прошедшие  через какое-либо механическое или  акустическое сопротивление или  систему задержки времени (асимметричный микрофон градиента давления).

Большое влияние на характеристики микрофона оказывает его механоэлектрическая часть.

Чувствительность

Чувствительность микрофона  определяется отношением напряжения на выходе микрофона к звуковому  давлению Р0, как правило, в свободном звуковом поле[1], то есть при отсутствии влияния отражающих поверхностей[2]. При распространении синусоидальной звуковой волны в направлении рабочей оси микрофона, это направление называется осевой чувствительностью:

M0 = U/P0 (мВ/Па).

Рабочей осью микрофона является направление его преимущественного  использования и обычно совпадает  с осью симметрии микрофона. Если конструкция микрофона не имеет  оси симметрии, то направление рабочей  оси указывается в технических  условиях. Чувствительность современных  микрофонов составляет от 1–2 (динамические микрофоны) до 10–15 (конденсаторные микрофоны) мВ/Па. Чем больше это значение, тем выше чувствительность микрофона.

Таким образом, микрофон с  чувствительностью -75 дБ менее чувствителен, чем -54 дБ, а с обозначением 2 мВ/Па менее чувствителен, чем 20 мВ/Па. Для  ориентировки : -54 дБ это то же, что и 2,0 мВ/Па. Также надо учесть, что если у микрофона меньше чувствительность, это вовсе не означает, что он хуже.

Частотная характеристика чувствительности

Частотная характеристика чувствительности (ЧХЧ) - это зависимость осевой чувствительности микрофона от частоты звуковых колебаний  в свободном поле. Неравномерность  ЧХЧ, как правило, измеряют в децибелах  как двадцать логарифмов (по основанию 10) отношения чувствительности микрофона  на определённой частоте к чувствительности на опорной частоте (в основном 1 кГц).

Акустическая  характеристика

Влияние звукового поля микрофона  оценивается акустической характеристикой, которая определяется отношением силы, действующей на диафрагму микрофона, и звуковым давлением в свободном  звуковом поле: A = F/P, а потому, что  чувствительность микрофона M = U/P можно  представить как U/P = U/F • F/P и выразить через А. Тогда получим: M = A • U / F. Отношение напряжения на выходе микрофона  к силе, действующей на диафрагму U/F, характеризует микрофон как электромеханический  преобразователь. Акустическая характеристика определяет характеристику направленности микрофона. По виду акустической характеристики, а следовательно и характеристики направленности, отличают три типа микрофонов, как приёмников звука: приёмники давления; градиента давления; комбинированные.

Характеристика  направленности

Характеристикой направленности называют зависимость чувствительности микрофона от направления падения  звуковой волны по отношению к  оси микрофона. Она определяется отношением чувствительности Мα при  падении звуковой волны под углом  α относительно акустической оси  микрофона к его осевой чувствительности:

φ = Mα/M0

Направленность микрофона  означает его возможное расположение относительно источников звука. Если чувствительность не зависит от угла падения звуковой волны, т. е. φ = 1, то микрофон называют ненаправленным, и источники звука могут располагаться  вокруг него. А если чувствительность зависит от угла, то источники звука  должны располагаться в пространственном угле, в пределах которого чувствительность микрофона мало отличается от осевой чувствительности.

Ненаправленные  микрофоны

В ненаправленных микрофонах - приёмниках давления, сила, действующая  на диафрагму, определяется звуковым давлением  у поверхности диафрагмы. Звуковое поле может действовать только на одну сторону диафрагмы. Вторая сторона  конструктивно защищена. Если размеры  микрофона малы по сравнению с  длиной звуковой волны, то микрофон не изменяет звукового поля. Если размеры  соизмеримы с длиной волны, тогда  за счёт дифракции звуковых волн микрофон приобретает направленность. На частотах от 5000 Гц и ниже такие микрофоны  являются ненаправленными. Преимуществом  ненаправленных микрофонов является простота конструкции, расчёта капсюля и  стабильности характеристик с течением времени. Ненаправленные капсюли часто  используют в составе измерительных  микрофонов, в быту могут быть использованы для записи разговора людей, сидящих  за круглым столом.

Микрофоны двустороннего  направления

В микрофонах - приёмниках градиента  давления сила, действующая на движущуюся систему микрофона, определяется разностью  звуковых давлений на двух сторонах диафрагмы. То есть, звуковое поле действует на две стороны диафрагмы. Характеристика направленности имеет вид восьмёрки.

Двусторонние микрофоны  удобны, например, для записи разговора  двух собеседников, сидящих друг напротив друга.

Микрофоны одностороннего направления

Односторонняя направленность достигается в микрофонах комбинированного типа. Их диаграммы направленности близки по форме к кардиоиде, поэтому  нередко их называют кардиоидными. Модификации микрофонов, имеющих ещё меньшую направленность, чем кардиоидные, называют суперкардиоидными и гиперкардиоидными, однако эти разновидности, в отличие от кардиоидного микрофона, также чувствительны к сигналам с противоположной стороны.

Эти микрофоны имеют определённые преимущества в эксплуатации: источник звука располагается с одной  стороны микрофона в пределах достаточно широкого пространственного  угла, а звуки, распространяющиеся за его пределами, микрофон не воспринимает.

Уровень шумов

Уровень собственных шумов  микрофона Nш определяется отношением эффективного напряжения на выходе микрофона при отсутствии звукового поля Uш к напряжению U1 при наличии звукового поля с эффективным давлением в 0,1 Н/м²:

Nш = 20 lg Uш/U1, дБ.

Напряжение Uш обусловлено главным образом тепловыми шумами в компонентах электрической схемы микрофона.

Частотные диапазоны

Согласно решению МСЭ  принято различать следующие диапазоны частот:

yaneuch.ru

Реферат История и устройство микрофонов

История и устройство микрофонов

Собственно, первым термин "микрофон" предложил использовать британский изобретатель Сэр Чарльз Уитстоун в 1827 году. Его нехитрый инструмент для усиления слабых звуков — две тонкие рейки, сообщавшие механические колебания ушам, не имел ничего общего с тем, что теперь называется микрофоном. Ничего, кроме названия. Микрофон как устройство для преобразования акустического сигнала в электрический с сохранением волновых характеристик — появился в 1876 году. Правда, назывался он совершенно иначе — жидкостный передатчик (liquid transmitter).

Жидкостный передатчик

Принцип работы жидкостного передатчика достаточно прост. В трубообразный резервуар налито немного воды, на которой "плавает" пергаментная диафрагма.

К диафрагме присоединён провод — так, чтобы лишь едва соприкасаться с водой. В воду добавлено небольшое количество кислоты, чтобы улучшить её электропроводимость.

Когда человек что-то говорит в трубку, диафрагма начинает колебаться, так что провод соприкасается с водой то больше, то меньше. Соответственным образом изменяется сопротивление электрической цепи.

4 марта 1877 года американский изобретатель Эмиль Берлинер построил первый угольный микрофон. Однако развитие получил микрофон американского изобретателя Дэвида Юза (в мае 1878 года). Микрофон Юза содержал угольный стержень с заострёнными концами, упиравшийся в две угольные же чашечки, и соединённый с подвижной мембраной. Площадь контакта угольного стержня с чашечками сильно менялась при колебаниях мембраны, соответственно менялось и сопротивление угольного микрофона, а с ним и ток в цепи. Микрофон Юза совершенствовался многими изобретателями. Весьма значительно усовершенствовал этот тип микрофонов Эдисон. Он предложил использовать угольный порошок вместо угольного стержня, т. е. изобрёл новый вид угольного микрофона с угольным порошком. Автор наиболее прижившейся конструкции угольного микрофона — Энтони Уайт (1890).

Угольный микрофон практически не требует усиления сигнала, сигнал с его выхода можно подавать непосредственно на высокоомный наушник или громкоговоритель. Из-за этого свойства угольные микрофоны использовались до недавнего времени в телефонных аппаратах (с дисковым номеронабирателем). Однако угольный микрофон отличается плохой амплитудно-частотной характеристикой (он нечувствителен к слишком низким и слишком высоким частотам). Кроме того, в отличие от наиболее распространённого динамического микрофона, угольный требует питания постоянным током.

Первый "ленточный" микрофон "44А" изобретён в 1942 году сотрудниками американской компании RCA. Ему суждено было стать одним из самых популярных микрофонов для студийных записей. Собственно говоря, больше он нигде и не применялся: слишком тяжёл (3,5 килограмма). Однако он обладал и рядом заметных преимуществ: высокая чувствительность и узкая направленность, за счёт чего отсекались посторонние шумы.

В микрофоне использовалась лента длиной 50 мм и шириной 2,4 мм, которая двигалась в магнитном поле в соответствии со звуковым давлением. Впоследствии вес ленточных микрофонов значительно уменьшился, а для увеличения чувствительности стали использовать два ленточных капсюля сразу.

В настоящее время в профессиональной практике используются только динамические и конденсаторные микрофоны. Первый динамический микрофон ДМК изготовили на заводе "Октава" в 1936 году. Динамический микрофон — это наиболее распространённый тип конструкции микрофона. Диафрагма динамического микрофона связана с катушкой, находящейся в зазоре вокруг магнита.

Продольные колебания прилегающего воздуха смещают диафрагму с катушкой относительно постоянного магнитного поля, что приводит к появлению на концах катушки переменного электрического потенциала, напряжение и частота которого пропорциональны силе и частоте звука, воздействующего на диафрагму.

В отличие от конденсаторных, динамические микрофоны не требуют фантомного питания.

Компания AKG в 1947 году представила свой первый конденсаторный микрофон, но до 1962 года, когда Белл Лабс начали выпускать свою версию таких микрофонов, особой популярностью они не пользовались. А уже концу 1970-х годов приблизительно треть всех выпускаемых в мире микрофонов были конденсаторными.

В конденсаторном микрофоне звук воздействует на мембрану, являющуюся одной из обкладок конденсатора.

Этот конденсатор включен в последовательную цепь с источником постоянного тока. При звуковом воздействии на мембрану она начинает колебаться, вызывая изменение емкости, которое, в свою очередь, превращает постоянное напряжение источника в переменное.

Конденсаторный микрофон имеет очень высокое выходное сопротивление. В связи с этим, внутри его корпуса располагают предусилитель с высоким входным сопротивлением. Конденсаторные микрофоны обладают весьма равномерной амплитудно-частотной характеристикой и обеспечивают высококачественное звучание, в связи с чем широко используются в студиях звукозаписи, на радио и телевидении.

Недостатками их являются высокая стоимость, необходимость во внешнем питании и высокая чувствительность к ударам и климатическим воздействиям — влажности воздуха и перепадам температуры. Однако существует тип конденсаторного микрофона — электретный микрофон, который свободен от большинства перечисленных недостатков.

Принцип действия электретного конденсаторного микрофона основан на способности некоторых диэлектрических материалов (электретов) сохранять поверхностную неоднородность распределения заряда в течение длительного времени. Тонкая плёнка из гомоэлектрета помещается в зазор конденсатора, у которого мембрана имеет возможность перемещаться под действием внешнего акустического сигнала, либо пленка наносится на одну из обкладок. Это приводит к появлению некоторого постоянного заряда конденсатора. При изменении ёмкости, из-за смещения мембраны, на конденсаторе проявляется изменение напряжения, соответствующее акустическому сигналу.

Электретный микрофон имеет очень высокое сопротивление (несколько сотен кОм или Мом), что вынуждает подключать их к усилителям с высоким входным сопротивлением.

Заключение

Итак, самый первый микрофон, появившийся на свет в 1876 году, назывался жидкостный передатчик. Через год американский изобретатель Эмиль Берлинер построил первый угольный микрофон. Первый динамический микрофон был выпущен спустя почти 60 лет. "Ленточный" микрофон появился в 1942 году. А спустя еще 5 лет был представлен первый конденсаторный микрофон.

Сейчас в профессиональной практике используются только динамические и конденсаторные микрофоны. Динамические микрофоны довольно надёжны и крепки — во всяком случае, крепче конденсаторных, поэтому их, в основном, и используют на концертах. Но в связи с тем, что масса подвижных элементов в динамических микрофонах больше, их чувствительность заведомо ниже, чем в конденсаторных. Последние же имеют тенденцию записывать звук как он есть, со всеми недостатками. Поэтому даже те, кто способен петь "вживую" безупречно, предпочитают даже в студии использовать динамические микрофоны.

Список использованной литературы

  • Вейценфельд, А. Устройство и технические параметры микрофонов / А. Вейценфельд // Звукорежиссер. – 2000. - №1.

  • Избранные главы из истории микрофонов // Кладезь знаний - статьи, обзоры, новости, 2006. Режим доступа: http://Art.Thelib.Ru

  • Микрофон // Википедия - свободная энциклопедия, 2008. Режим доступа: http://ru.wikipedia.org

Ссылки (links):
  • http://art.thelib.ru/
  • bukvasha.ru

    Реферат Электретный микрофон

    скачать

    Реферат на тему:

    План:

      Введение
    • 1 Принцип действия гомоэлектретного микрофона
    • 2 Принцип действия гетероэлектретного микрофона
    • 3 Особенности подключения

    Введение

    Слева электретный капсюль (конденсатор) микрофона МКЭ-3, справа — весь микрофон (содержит капсюль и буферный усилитель)

    Электретные микрофоны («капсюли»).

    Электре́тный микрофо́н — разновидность конденсаторного микрофона.

    Принцип действия электретного конденсаторного микрофона основан на способности некоторых диэлектрических материалов (электретов) сохранять поверхностную неоднородность распределения заряда в течение длительного времени.

    1. Принцип действия гомоэлектретного микрофона

    Тонкая плёнка из гомоэлектрета помещается в зазор конденсаторного микрофона (то есть конденсатора, у которого одна из обкладок (мембрана) имеет возможность перемещаться под действием внешнего акустического сигнала) либо наносится на одну из обкладок. Это приводит к появлению некоторого постоянного заряда конденсатора. При изменении ёмкости, вследствие смещения мембраны, на конденсаторе проявляется изменение напряжения, соответствующее акустическому сигналу.

    2. Принцип действия гетероэлектретного микрофона

    В таком микрофоне сама гетероэлектретная плёнка служит мембраной. При её деформации на её поверхностях возникают разноимённые заряды, которые можно зарегистрировать, расположив электроды непосредственно на поверхности плёнки (на поверхность напыляют тонкий слой металла (алюминий, золото, серебро и т. п.).

    3. Особенности подключения

    Типичная схема предусилителя на встроенном полевом транзисторе. Внешнее напряжение питания подаётся на U+; отделённая конденсатором переменная составляющая сигнала снимается с «Output»; резистор устанавливает режим работы транзистора и выходной импеданс.

    В отличие от динамических микрофонов, имеющих низкое электрическое сопротивление катушки (~50Ом÷ 1 кОм), электретный микрофон имеет чрезвычайно высокий импеданс (имеющий емкостный характер, порядка десятков пФ), что вынуждает подключать их к усилителям с высоким входным сопротивлением. В конструкцию практически всех электретных микрофонов входит предусилитель («преобразователь сопротивления», «согласователь импеданса») на полевых транзисторах, реже на миниатюрных радиолампах с входным сопротивлением порядка 1 ГОм и выходным сопротивлением в сотни Ом, находящийся в непосредственной близости от капсюля. Поэтому, несмотря на отсутствие необходимости в поляризующем напряжении, такие микрофоны требуют внешнего источника электропитания.

    wreferat.baza-referat.ru

    Реферат: Микрофоны

     

     

     

     

     

     

     

     

     

     

     

     

     

    Микрофоны

    Микрофоном называют устройство, которое преобразует механические колебания воздушной среды в электрические колебания.

    Микрофоны классифицируют по следующим признакам:

    §  по особенностям приёма звуковых колебаний,

    §  по принципу преобразования акустических колебаний в электрические,

    §  по классам качества.

    Элементом конструкции микрофона, воспринимающим звуковые колебания, является мембрана. В зависимости от того, как взаимодействует мембрана со звуковым полем, существенно зависят характеристики микрофона. Возможно несколько вариантов взаимодействия.

    Если для воздействия звуковых волн доступна только одна сторона поверхности мембраны, то такой микрофон называют приёмником давления.

    В том случае, когда длина волны больше геометрических размеров микрофона, волны огибают корпус микрофона и звуковое давление p не зависит от ориентации мембраны в звуковом поле. Следовательно, сила  (S – площадь поверхности мембраны), действующая на мембрану, не зависит от её положения в пространстве. Микрофон будет принимать звуковые сигналы со всех направлений одинаково, т.е. будет ненаправленным. Если размеры корпуса микрофона больше, чем длина волны, то звуковое давление у поверхности мембраны при нормальном падении волн удваивается по сравнению с давлением в свободном поле (звуковое давление падающей и отраженной волн складываются). При падении волн под углом к нормали звуковое давление будет уменьшаться из-за изменения коэффициента отражения и затенения мембраны корпусом, т.е. условия приёма колебаний с разных направлений неодинаковы. Микрофон приобретает направленность.

    Введем понятие акустической чувствительности микрофона Еа, как отношение силы, действующей на мембрану, к величине звукового давления. На длинных волнах акустическая чувствительность , т.е. постоянная влияния, не зависящая от направления прихода волн. Изобразим график зависимости акустической чувствительности микрофона  от угла между нормалью к поверхности мембраны и направлением прихода звуковых волн. В дальнейшем этот график будем называть диаграммой направленности микрофона. Если на графике откладывать не абсолютную чувствительность , а значения , то получим нормированную диаграмму направленности микрофона.

     

    Нормированная диаграмма направленности микрофона – приёмника давления.

     

    На рис. 1. показаны нормированные диаграммы направленности приёмника давления для разных значений отношения , где d – размер корпуса микрофона.

    Если мембрана доступна для звуковых волн с обеих сторон, то её колебания происходят под действием разности давлений фронтальной и тыловой волн. Такие микрофоны называют приёмниками градиента давления.

    Акустическая чувствительность приёмника градиента давления:

     

    Разность давлений возникает за счет разности хода звуковых волн до внешней (фронтальной) и внутренней (тыльной) поверхности мембраны. Разность хода волн, в свою очередь, создаёт разность фаз и разность амплитуд. Разность фаз (см. рис. 2):

     

    Рисунок 2

     

     

    Разность амплитуд звукового давления, отнесенная к амплитуде падающей ( фронтальной) волны:

     

    ,

     

    где р1 – звуковое давление на расстоянии 1 м от источника. Таким образом, разность амплитуд более существенна на малых расстояниях.

    Определим разность давлений:

    ,

     

    где , .

    Акустическая чувствительность:

     

     (1)

     

    Исследуем выражение (1). Зависимость акустической чувствительности Еа от угла падения θ представлена на рис. 3. Как следует из рисунка, микрофон – приёмник градиента давления обладает направленными свойствами. На низких частотах микрофон обладает максимальной чувствительностью в направлении оси. Форма диаграммы направленности близка к окружности, проходящей через начало координат. В области верхних частот максимум чувствительности смещается в стороны от оси микрофона.

    Частотные характеристики осевой акустической чувствительности приёмника градиента давления для разных расстояний от источника звука приведена на рисунке 4. Для малых расстояний частотная характеристика более или менее равномерна в области низких частот и имеет максимум ~ 10 дБ в области верхних частот. На больших расстояниях от источника неравномерность частотной характеристики возрастает (~ 30дБ).

    Диаграммы направленности приёмника градиента давления, рассчитанные для размера мембраны а = 0.017 м и расстояния r = 0.1 м. Кривая 1 – для частоты 100 Гц, 2 – для частоты 10000 Гц и 3 – для 20000 Гц.

     

    Конструкция такого приёмника схематически показана на рисунке 4. Мембрана установлена в плоскости одного из торцов цилиндра, длина которого равна d. Колебания мембраны происходят под действием силы, создаваемой разностью давлений фронтальной и тыловой волн.

     

    Рисунок 4.

    Частотная характеристика осевой чувствительности микрофона – приёмника градиента давления, вычисленная для а = 0.017 м и расстояний r = 0.02 м (кривая 1) и r = 10 м (кривая 2).

     

    Разность хода фронтальной и тыловой волн . Если подставить это значение  (1) и произвести упрощения, то для больших расстояний от источника получим:

     

    ,

     

    т.е. диаграмма направленности асимметричного приёмника градиента давления – кардиоида. В общем случае диаграмма направленности асимметричного приёмника градиента давления зависит от расстояния и частоты звуковых колебаний (см. рис. 6).

    Для получения приёмников с управляемой формой диаграммы направленности часто комбинируют приёмники давления и приёмники градиента давления. Оба микрофона устанавливают один над другим так, чтобы их оси имели одинаковое направление, а сигналы микрофонов суммируют. Тогда акустическая чувствительность комбинированного микрофона Еа = Еад + Еагд = Еад + Еагдо, где Еад – акустическая чувствительность приёмника давления, Еагдо – осевая акустическая чувствительность приёмника градиента давления, θ – угол между осью системы микрофонов и направлением прихода волн,  описывает диаграмму направленности приёмника градиента давления. Нормированная характеристика направленности комбинированного микрофона  запишется следующим образом:

     

     

    Диаграммы направленности микрофона – асимметричного приёмника градиента давления, рассчитанные для d = 0.03 м, r = 0.1 м и следующих частот: кривая 1 для 100 Гц, кривая 2 – 5000 Гц и кривая 3 – 10000 Гц.

     

    -       .

    Введем параметр , тогда  и:

     

     (2)

     

    Задавая различные значения параметра q, будем получать различные диаграммы направленности комбинированного микрофона.

    Для описания свойств диаграммы направленности используют ряд её характеристик, таких как коэффициент направленности, индекс направленности, ширина диаграммы направленности, перепад чувствительности «фронт-тыл».

    Коэффициентом направленности  называют отношение квадрата осевой чувствительности микрофона, измеренной в свободном поле, к среднему по всем направлениям квадрату чувствительности, измеренному при тех же условиях. Для диаграмм направленности с осевой симметрией коэффициент направленности вычисляют по формуле:

     

                               (3)

     

    Индекс направленности Q – коэффициент направленности, выраженный в децибелах:

     

                                             (4)

     

    Ширина диаграммы направленности  определяется углом, в пределах которого чувствительность микрофона уменьшается не более чем в  раз относительно осевой чувствительности.

    Перепад чувствительности «фронт-тыл» - отношение чувствительности микрофона при θ = 00 к чувствительности при θ = 1800.

    В таблице 1 прведены значения этих характеристик направленности комбинированного микрофона для ряда значений параметра q.

     

    Таблица 1. Характеристики комбинированных приёмников при разных значениях параметра q.

    q

    Форма диаграммы направленности

    Ω

    Q

    Ф/т, дБ

    0

    Ненаправленная

    1

    0

    3600

    0

    0.5

    Кардиоида

    3

    4.77

    1320

    0.634

    Суперкардиоида

    3.73

    5.72

    1150

    11.43

    0.75

    Гиперкардиоида

    4

    6.02

    1050

    6.02

    1

    Косинусоида

    3

    4.77

    900

    0

     

    Управление диаграммой направленности может быть осуществлено, например, при включении микрофонов по схеме, изображенной на рис. 7.

     

    Рисунок 7.

     

    При верхнем положении движков потенциометров работает только приёмник давления (q = 0), микрофон – ненаправленный. При нижнем положении движков работает только приёмник градиента давления (q = 1), диаграмма направленности – косинусоидная. В промежуточных положениях движков получаются диаграммы направленности других видов (см. таблицу 6).

    В некоторых случаях приёмник должен иметь более острую диаграмму направленности, чем у приёмников, рассмотренных выше. Такая задача может быть решена путем объединения нескольких одинаковых приёмников в группу.

    Микрофоны располагают вдоль прямой линии на расстоянии d друг от друга, Выходы микрофонов соединяют последовательно (см. рис. 8).

     

    Рисунок 8

     

    Найдем характеристику направленности микрофона .Будем считать, что плоская звуковая волна падает под углом θ к оси системы. Тогда между напряжениями соседних микрофонов будет иметь место сдвиг по фазе

     

    где , а напряжение i – го микрофона  . Суммируя напряжения всех микрофонов, получим:

     

    .

     

    Амплитуда этого напряжения:

     

    .

     

    При  это выражение даёт неопределенность вида 0/0. Раскрывая неопределенность по правилу Лопиталя, получим . Тогда характеристика направленности:

     

     (5)

     

    где  - характеристика направленности одного микрофона. Из выражения (5) следует, что диаграмма направленности может иметь несколько лепестков. Направления , для которых характеристика направленности принимает нулевые значения, можно определить из условия:

     

     

    где  - целое число.

     

    Или иначе:

     

    .

     

    Откуда число нулей диаграммы направленности , т.е. чем больше размер линейки микрофонов, тем больше число лепестков диаграммы направленности и каждый лепесток становится уже. На рис. 9 приведены диаграммы направленности линейки из ненаправленных микрофонов для ряда частот.

     

    Диаграммы направленности линейки из 5 ненаправленных микрофонов. . Кривая 1 для частоты 100 Гц, кривая 2 – для частоты 500 Гц, кривая 3 – для 1000 Гц.

    www.referatmix.ru