Notice: Use of undefined constant REQUEST_URI - assumed 'REQUEST_URI' in /var/www/www-root/data/www/sound-talk.ru/index.php on line 2

Notice: Use of undefined constant DOCUMENT_ROOT - assumed 'DOCUMENT_ROOT' in /var/www/www-root/data/www/sound-talk.ru/index.php on line 5

Notice: Use of undefined constant REQUEST_URI - assumed 'REQUEST_URI' in /var/www/www-root/data/www/sound-talk.ru/index.php on line 5

Notice: Use of undefined constant DOCUMENT_ROOT - assumed 'DOCUMENT_ROOT' in /var/www/www-root/data/www/sound-talk.ru/index.php on line 11

Notice: Use of undefined constant REQUEST_URI - assumed 'REQUEST_URI' in /var/www/www-root/data/www/sound-talk.ru/index.php on line 11

Notice: Use of undefined constant REQUEST_URI - assumed 'REQUEST_URI' in /var/www/www-root/data/www/sound-talk.ru/index.php on line 28

Notice: Use of undefined constant REQUEST_URI - assumed 'REQUEST_URI' in /var/www/www-root/data/www/sound-talk.ru/index.php on line 28

Notice: Use of undefined constant REQUEST_URI - assumed 'REQUEST_URI' in /var/www/www-root/data/www/sound-talk.ru/index.php on line 28

Notice: Undefined variable: flag in /var/www/www-root/data/www/sound-talk.ru/index.php on line 28

Notice: Undefined variable: adsense7 in /var/www/www-root/data/www/sound-talk.ru/index.php on line 39

Notice: Undefined variable: adsense6 in /var/www/www-root/data/www/sound-talk.ru/index.php on line 40
Колонки для усилителя а класса. На сайте радиочипи представлены принципиальные схемы сабвуферов, собранные своими руками

Транзисторный усилитель класса А своими руками. Колонки для усилителя а класса


Транзисторный усилитель класса А своими руками / Хабр

На Хабре уже были публикации о DIY-ламповых усилителях, которые было очень интересно читать. Спору нет, звук у них чудесный, но для повседневного использования проще использовать устройство на транзисторах. Транзисторы удобнее, поскольку не требуют прогрева перед работой и долговечнее. Да и не каждый рискнёт начинать ламповую сагу с анодными потенциалами под 400 В, а трансформаторы под транзисторные пару десятков вольт намного безопаснее и просто доступнее.

В качестве схемы для воспроизведения я выбрал схему от John Linsley Hood 1969 года, взяв авторские параметры в расчёте на импеданс своих колонок 8 Ом.

Классическая схема от британского инженера, опубликованная почти 50 лет назад, до сих пор является одной из самых воспроизводимых и собирает о себе исключительно положительные отзывы. Этому есть множество объяснений: — минимальное количество элементов упрощает монтаж. Также считается, что чем проще конструкция, тем лучше звук; — несмотря на то, что выходных транзисторов два, их не надо перебирать в комплементарные пары; — выходных 10 Ватт с запасом хватает для обычных человеческих жилищ, а входная чувствительность 0.5-1 Вольт очень хорошо согласуется с выходом большинства звуковых карт или проигрывателей; — класс А — он и в Африке класс А, если мы говорим о хорошем звучании. О сравнении с другими классами будет чуть ниже.

Внутренний дизайн
Усилитель начинается с питания. Разделение двух каналов для стерео правильнее всего вести уже с двух разных трансформаторов, но я ограничился одним трансформатором с двумя вторичными обмотками. После этих обмоток каждый канал существует сам по себе, поэтому надо не забывать умножать на два всё упомянутое снизу. На макетке делаем мосты на диодах Шоттки для выпрямителя.

Можно и на обычных диодах или даже готовых мостах, но тогда их необходимо шунтировать конденсаторами, да и падение напряжения на них больше. После мостов идут CRC-фильтры из двух конденсаторов по 33000 мкф и между ними резистор 0.75 Ом. Если взять меньше и ёмкость, и резистор, то CRC-фильтр станет дешевле и меньше греться, но увеличатся пульсации, что не комильфо. Данные параметры, имхо, являются разумными с точки зрения цена-эффект. Резистор в фильтр нужен мощный цементный, при токе покоя до 2А он будет рассеивать 3 Вт тепла, поэтому лучше взять с запасом на 5-10 Вт. Остальным резисторам в схеме мощности 2 Вт будет вполне достаточно.

Далее переходим к самой плате усилителя. В интернет-магазинах продаётся куча готовых китов, однако не меньше и жалоб на качество китайских компонентов или безграмотных разводок на платах. Поэтому лучше самому, под свою же «рассыпуху». Я сделал оба канала на единой макетке, чтобы потом прикрепить её ко дну корпуса. Запуск с тестовыми элементами:

Всё, кроме выходных транзисторов Tr1/Tr2, находится на самой плате. Выходные транзисторы монтируются на радиаторах, об этом чуть ниже. К авторской схеме из оригинальной статьи нужно сделать такие ремарки:

— не всё нужно сразу впаивать намертво. Резисторы R1, R2 и R6 лучше сначала поставить подстроечными, после всех регулировок выпаять, измерить их сопротивление и припаять окончательные постоянные резисторы с аналогичным сопротивлением. Настройка сводится к следующим операциям. Сначала с помощью R6 выставляется, чтобы напряжение между X и нулём было ровно половиной от напряжения +V и нулём. В одном из каналов мне не хватило 100 кОм, так что лучше брать эти подстроечники с запасом. Затем с помощью R1 и R2 (сохраняя их примерное соотношение!) выставляется ток покоя – ставим тестер на измерение постоянного тока и измеряем этот самый ток в точке входа плюса питания. Мне пришлось ощутимо снизить сопротивление обоих резисторов для получения нужного тока покоя. Ток покоя усилителя в классе А максимальный и по сути, в отсутствие входного сигнала, весь уходит в тепловую энергию. Для 8-омных колонок этот ток, по рекомендации автора, должен быть 1.2 А при напряжении 27 Вольт, что означает 32.4 Ватта тепла на каждый канал. Поскольку выставление тока может занять несколько минут, то выходные транзисторы должны быть уже на охлаждающих радиаторах, иначе они быстро перегреются и умрут. Ибо греются в основном они.

— не исключено, что в порядке эксперимента захочется сравнить звучание разных транзисторов, поэтому для них тоже можно оставить возможность удобной замены. Я попробовал на входе 2N3906, КТ361 и BC557C, была небольшая разница в пользу последнего. В предвыходных пробовались КТ630, BD139 и КТ801, остановился на импортных. Хотя все вышеперечисленные транзисторы очень хороши, и разница может быть скорее субъективной. На выходе я поставил сразу 2N3055 (ST Microelectronics), поскольку они нравятся многим.

— при регулировке и занижении сопротивления усилителя может вырасти частота среза НЧ, поэтому для конденсатора на входе лучше использовать не 0.5 мкф, а 1 или даже 2 мкф в полимерной плёнке. По Сети ещё гуляет русская картинка-схема «Ультралинейный усилитель класса А», где этот конденсатор вообще предложен как 0.1 мкф, что чревато срезом всех басов под 90 Гц:

— пишут, что эта схема не склонна к самовозбуждению, но на всякий случай между точкой Х и землёй ставится цепь Цобеля: R 10 Ом + С 0.1 мкф. — предохранители, их можно и нужно ставить как на трансформатор, так и на силовой вход схемы. — очень уместным будет использование термопасты для максимального контакта между транзистором и радиатором.

Слесарно-столярное
Теперь о традиционно самой сложной части в DIY — корпусе. Габариты корпуса задаются радиаторами, а они в классе А должны быть большими, помним про 30 Ватт тепла с каждой стороны. Сначала я недоучёл эту мощность и сделал корпус со средненькими радиаторами 800см² на канал. Однако при выставленном токе покоя 1.2А они нагрелись до 100°С уже за 5 минут, и стало ясно, что нужно нечто помощнее. То есть нужно либо ставить радиаторы побольше, либо использовать кулеры. Делать квадрокоптер мне не хотелось, поэтому были куплены гигантские красавцы HS 135-250 площадью 2500 см² на каждый транзистор. Как показала практика, такая мера оказалась немного избыточной, зато теперь усилитель спокойно можно трогать руками – температура равна лишь 40°С даже в режиме покоя. Некоторой проблемой стало сверление отверстий в радиаторах под крепления и транзисторы – изначально купленные китайские свёрла по металлу сверлили крайне медленно, на каждую дырку уходило бы не менее получаса. На помощь пришли кобальтовые свёрла с углом заточки 135° от известного немецкого производителя — каждое отверстие проходится за несколько секунд!

Сам корпус я сделал из оргстекла. Заказываем у стекольщиков сразу нарезанные прямоугольники, выполняем в них необходимые отверстия для креплений и красим с обратной стороны чёрной краской.

Покрашенное с обратной стороны оргстекло смотрится очень красиво. Теперь остаётся только всё собрать и наслаждаться музы… ах да, при окончательной сборке ещё важно для минимизации фона правильно развести землю. Как было выяснено за десятилетия до нас, C3 нужно присоединять к сигнальной земле, т.е. к минусу входа-входа, а все остальные минуса можно отправить на «звезду» возле конденсаторов фильтра. Если всё сделано правильно, то никакого фона не расслышать, даже если на максимальной громкости поднести ухо к колонке. Ещё одна «земляная» особенность, которая характерна для звуковых карт, не развязанных с компьютером гальванически – это помехи с материнки, которые могут пролезть через USB и RCA. Судя по интернету, проблема встречается часто: в колонках можно услышать звуки работы HDD, принтера, мышки и фон БП системника. В таком случае проще всего разорвать земляную петлю, заклеив изолентой заземление на вилке усилителя. Опасаться тут нечего, т.к. останется второй контур заземления через компьютер.

Регулятор громкости на усилителе я не стал делать, поскольку достать какой-нибудь качественный ALPS не удалось, а шуршание китайских потенциометров мне не понравилось. Вместо него был установлен обычный резистор 47 кОм между «землёй» и «сигналом» входа. Тем более регулятор у внешней звуковой карты всегда под рукой, да и в каждой программе тоже есть ползунок. Регулятора громкости нет только у винилового проигрывателя, поэтому для его прослушивания я приделал внешний потенциометр к соединительному кабелю.

Я угадаю этот контейнер за 5 секунд...
Наконец, можно приступать к прослушиванию. В качестве источника звука используется Foobar2000 → ASIO → внешняя Asus Xonar U7. Колонки Microlab Pro3. Главное достоинство этих колонок — это отдельный блок собственного усилителя на микросхеме LM4766, который можно сразу убрать куда-то подальше. Намного интереснее с этой акустикой звучали усилок от мини-системы Panasonic с гордой надписью Hi-Fi или усилитель советского проигрывателя Вега-109. Оба вышеупомянутых аппарата работают в классе АВ. Представленный в статье JLH переиграл всех вышеперечисленных товарищей в одну калитку, по результатам слепого теста для 3 человек. Хотя разницу было слышно невооружённым ухом и без всяких тестов – звук явно детальнее и прозрачнее. Весьма легко, например, услышать различие между MP3 256kbps и FLAC. Раньше я думал, что эффект lossless больше как плацебо, но теперь мнение изменилось. Аналогичным образом гораздо приятнее стало слушать нескомпрессованые от loudness war файлы — dynamic range меньше 5 Дб вообще не айс. Линсли-Худ стоит затрат времени и денег, ибо аналогичный брендовый усилок будет стоить намного дороже.
Материальные затраты
Трансформатор 2200 р. Выходные транзисторы (6 шт. с запасом) 900 р. Конденсаторы фильтра (4 шт) 2700 р. «Рассыпуха» (резисторы, мелкие конденсаторы и транзисторы, диоды) ~ 2000 р. Радиаторы 1800 р. Оргстекло 650 р. Краска 250 р. Разъёмы 600 р. Платы, провода, серебряный припой и пр. ~1000 р. ИТОГО ~12100 р.

habr.com

A, B, AB, H, D?

Когда мы тестируем в нашей акустической лаборатории усилители для автомобильных аудиосистем, то частенько упоминаем в материалах их классы, мол, этот работает в экономичном классе D, а тот чисто для аудиофилов — в классе Real АВ. И тут мне недавно задали вопрос: а что это за классы такие вообще? Ну что ж, разберемся.Выбирая в магазине подходящий усилитель для аудиосистемы, обратите внимание на то, в каком классе они работают. Класс АВ можно назвать традиционным, в нем работает большинство усилителей. В последнее время все чаще встречаются усилки класса D, которые называют цифровыми, хотя это не совсем правильно, и скоро вы поймете почему. Что предпочесть? Какой лучше? Как обычно, однозначного ответа нет, поскольку у каждого есть свои преимущества и недостатки. Но для начала пару слов о том, что и как там вообще происходит внутри.

КАЧНЕМ ТОКУОсновные элементы практически любого усилителя — это транзисторы. Не будем вдаваться в суть построения различных схем, тем более, что их на самом деле далеко не одна, а выделим основное — сам принцип работы. Для этого на время представим усилитель в виде, ну, скажем... водопровода. Неожиданно, правда? Тем не менее, аналогия налицо, и вы сейчас в этом убедитесь. Во-первых, в усилителе есть блок питания, преобразующий однополярное напряжение бортовой сети („плюс" и „масса") в двухполярное („плюс",„масса" и „минус"). Мы уже говорили, зачем он необходим, когда рассматривали, как измеряются мощности усилителей. Так вот, в такой системе двухполярный блок питания будет представлять собой не что иное, как два насоса (насос со стороны „+" будет как бы накачивающим, а насос со стороны „-" как бы откачивающим ток относительно массы). Наша задача — пустить эти потоки через нагрузку усилителя (нагрузка — это как раз подключенный к усилителю динамик). Для этого, понятное дело, нужны краны, которые будут управлять этими потоками.Вот как раз роль этих кранов и играют транзисторы. Они могут открываться, пропуская через себя большой поток, или закрываться, уменьшая его. „Краны" эти по отношению друг к другу обратные: когда один начнет закрываться, другой будет открываться. Соответственно, поток от „насосов" будет направляться через нагрузку то в одну, то в другую сторону. А управляет всем этим открытием-закрытием как раз входной сигнал.

УСИЛИТЕЛИ КЛАССА А. В, АВ, ННо на самом деле просто открывать и закрывать транзистор еще мало, ведь нам нужно, чтобы сигнал усиливался без искажений, то есть, чтобы выходной сигнал по форме в точности повторял входной. Значит нам необходимо, чтобы транзисторы (эти самые краны) открывались и закрывались по строго линейному закону, строго пропорционально входному сигналу.Но вот незадача, на самом деле транзистор может так работать не во всем своем диапазоне. Например, если входной сигнал слишком маленький, то транзистор на него почти не реагирует, зато при достижении определенного уровня резко открывается. Какая уж тут линейность? А вот дальше этого момента реагирует на изменение управляющего сигнала вполне адекватно, почти что линейно. Значит, для того, чтобы искажений было как можно меньше, транзистор придется все время держать в приоткрытом состоянии. Это называется задать смещение транзистора или выбрать его рабочую точку.В этом случае говорят, что усилитель работает в классе А. Такой класс усилителей по праву считается аудиофильским, поскольку обеспечивает очень маленькие искажения сигнала. Но самый главный его недостаток — высокий ток покоя. Ток покоя — это ток, который будет течь через транзисторы, даже когда входного сигнала нет (ведь нам же пришлось задать транзисторам некоторое смещение). Из-за этого они довольно сильно нагреваются, и значительная часть энергии от блока питания уходит в тепло, а КПД усилителя составляет в лучшем случае всего лишь около 20-30%.

Но поскольку автомобильные усилители на самом деле делаются не на одном транзисторе, а строятся по так называемым двухтактным схемам, т.е. с 2 транзисторами, то возникает одна заманчивая идея. Что, если не держать их постоянно приоткрытыми? Пусть они оба при отсутствии входного сигнала будут закрытыми? Поскольку транзисторы по отношению друг к другу обратные, то получится, что один из них будет открываться, когда сигнал положительный, а другой — когда сигнал отрицательный. Иными словами, получится, что первый будет усиливать положительную полуволну сигнала, а другой — отрицательную, на нагрузке же эти половинки благополучно сложатся. Когда усилитель работает в таком режиме, то говорят, что это класс В.Решение, несомненно, хорошее, ведь через транзисторы в такой схеме не течет бесполезный ток, когда сигнала нет, а значит и КПД усилителя получается гораздо выше. Однако все бы замечательно, но дело в том, что какие бы мы хорошие и качественные транзисторы не поставили, у них все равно будет присутствовать нелинейность в самом начале их открытия. А это значит, что в тот момент, когда один транзистор только закрывается, а второй только открывается, неизбежно появится искажение в виде ступеньки.

Когда уровень сигнала высокий, эта ступенька не выглядит очень уж большой, и если особо не придираться, то на нее еще можно и не обращать особого внимания. А вот на небольших уровнях сигнала она будет уже слишком заметна. Поэтому класс В в чистом виде в автомобильных усилителях не используется из-за больших искажений.Так какой же режим лучше всего выбрать для усилителя? В классе А — маленькие искажения, но и КПД низкий, львиная доля мощности блока питания уйдет в тепло (вот почему усилители, работающие в этом классе, греются как утюги). Класс В обеспечит хороший КПД, но искажения будут такими, что о высоком качестве воспроизведения особо говорить не придется. Компромиссное решение — это смешанный режим, когда транзисторам обеспечивается лишь небольшое смещение, гораздо меньшее, чем в чистом классе А, но уже достаточное для того, чтобы избежать заметной ступеньки в выходном сигнале. При этом так и говорят — усилитель работает в классе АВ.Выбирая рабочую точку транзисторов (ну или иными словами, выбирая насколько транзисторы будут приоткрыты в режиме покоя, то есть при отсутствии входного сигнала), можно сделать усилитель класса АВ ближе к классу А или к В. Например, в первом случае наиболее заметен тот эффект, что до достижения определенной мощности усилитель работает в классе А, а на высоких уровнях как бы автоматически переходит в класс АВ — решение, довольно часто применяемое в усилителях высокого класса (иногда в описаниях к таким усилителям можно встретить обозначение их класса как Real АВ).Справедливости ради, нужно отметить, что классы А, В и АВ не единственные. Есть и другие, которые можно назвать производными от них, они представляют собой попытки совместить экономичность АВ-класса с качеством А-класса. Например, класс А+ — симбиоз усилителей В-класса и А-класса (выход первого является средней точкой для второго). Или класс Super A (Non Switching) — в них специальная схема не дает транзисторам полностью запираться(ведь основные искажения, как вы уже знаете, как раз из-за нелинейности в самый начальный момент открытия транзисторов-„кранов"). А усилители класса G вообще представляют собой два каскада усиления, работающих каждый от своего источника питания разного напряжения (на небольшой мощности работает каскад, питающийся от источника с небольшим напряжением, а на пиках к нему подключается второй, питающийся от источника с большим напряжением). Впрочем, все это довольно сложные схемы, которые и в домашней то технике применяются все реже, а уж в автомобильных усилителях это, мягко говоря, и вовсе экзотика.А вот усилители класса Н можно с уверенностью назвать чисто автомобильными. В этом классе делают усилители, встроенные в головное устройство. Понятное дело, в них нет никаких сложных блоков питания, преобразующих бортовые 12 Вольт в двухполярное питание с большим напряжением (впрочем, встроенный в ГУ усилитель все равно питается отдвухполярного напряжения, просто за среднюю точку для него принимается Uпит/2, то есть, условно говоря, 6 Вольт), поэтому мощность таких усилителей невелика. Класс Н — это попытка в какой-то мере нивелировать основной недостаток маломощных усилителей — зажатость звучания. Так как же он работает?На самом деле, усилитель класса Н — это практически то же самое, что и обычный усилитель класса АВ. Только в нем есть так называемая схема удвоения напряжения питания, основной элемент которой — конденсатор, накапливающий заряд, когда входной сигнал не очень большой. Ну а поскольку реальный музыкальный сигнал — это вам не синус, на котором по стандарту измеряется мощность, то для него характерны кратковременные пики. Так вот, как раз в моменты таких пиков этот самый конденсатор специальной схемой добавляется последовательно к питающему напряжению, и оно как бы кратковременно удваивается, помогая усилителю воспроизвести эти пики с меньшими искажениями. Это, на самом деле, не особо сказывается на мощности усилителя, измеренной стандартно на синусоидальном сигнале, но на средних и высоких частотах звучание субъективно становится лучше.

КСТАТИКласс усилителя в первом приближении можно распознать по характеру зависимости КНИ от мощности. Смотрите, на малых уровнях сигнала класс А обеспечивает самые маленькие искажения. А вот класс В за счет „ступеньки" в сигнале на малых уровнях непременно будет иметь повышенные искажения (так называемая проблема первого Ватта). Класс АВ где-то между ними.

УСИЛИТЕЛИ КЛАССА DКлассы А, В, АВ и прочие их производные — это все традиционные классы аналоговых усилителей, принципы построения у них схожие, разве что режимы работы транзисторов выбираются разные, да добавляются кое-какие примочки. Но есть и усилители, которые строятся изначально несколько иначе. Это импульсные усилители класса D (их, кстати, иногда называют цифровыми, хотя на самом деле технически это не очень корректно, в цифровую форму там ничего не переводится). Давайте в общих чертах разберем, как работает усилитель D-класса.Первым делом аналоговый входной сигнал (то есть обычный непрерывный сигнал с изменяющейся амплитудой) преобразуется в импульсный (сигнал с постоянной амплитудой, но прерывающийся). Причем длительности следующих друг за другом импульсов и пауз между ними будут разными, но самое главное — они будут в строгой зависимости от входного сигнала. Например, выше амплитуда входного сигнала — импульсы длиннее, ниже амплитуда — импульсы короче. Это называется широтно-импульсная модуляция (ШИМ).Теперь полученный импульсный сигнал нужно усилить, и делается это точно так же, как и в обычных усилителях. И тут может возникнуть вопрос: а зачем вообще было преобразовывать сигнал в импульсный, если его все равно приходится усиливать, как и в обычном усилителе? Оказывается, смысл есть. Дело в том, что транзисторы в этом случае будут работать совершенно по-другому — в ключевом режиме. То есть они будут либо полностью открытыми, либо полностью закрытыми, без промежуточных вариантов. А ведь для такой работы, во-первых, нет необходимости подбирать транзисторы с линейной ВАХ и стараться попасть на линейный участок этой характеристики. Во-вторых (а это, собственно, следствие из первого), КПД таких усилителей может запросто вплотную приблизиться к идеалу в 100%. А ведь это показатель, недостижимый для обычных усилителей в принципе. Так что усиливаем импульсный сигнал, и радуемся, как у нас это легко получается.Однако ж подавать такой усиленный импульсный сигнал на акустические системы, понятное дело, еще рано (как, позвольте спросить, под такой сигнал будет диффузор плясать?). Для этого нужно преобразовать его в обычную, аналоговую форму. Сделать это можно с помощью катушки индуктивности и конденсатора, которые вместе будут представлять собой LC-фильтр. Пропустив через них наш импульсный ШИМ-сигнал, на выходе мы получим усиленный сигнал, своей формой повторяющий входной.

Основное достоинство усилителей D-класса — высокий КПД. Однако есть и серьезный недостаток — частотный диапазон усилителя чаще всего бывает серьезно ограничен сверху. Именно это долгое время и было причиной применения этой технологии только в басовых моноблоках, рассчитанных исключительно на сабвуферное применение. Впрочем, с ее развитием и обычные, широкополосные усилители D-класса уже давно перестали быть экзотикой.

Задачей звуковых усилителей является передача входного звукового сигнала к системе воспроизведения звука с необходимыми громкостью и уровнем мощности — точно, эффективно и с малыми помехами. Звуковые частоты — это диапазон от 20 Гц до 20 кГц, соответственно усилитель должен обладать хорошей АЧХ во всем диапазоне (или же в более узкой области, если речь идет о динамике с ограниченной полосой воспроизведения, например о среднечастотном или высокочастотном динамике в многополосной системе). Мощности могут быть разными (в зависимости от конкретного устройства): милливатты в наушниках, ватты в звуковых телевизионных системах и аудио для ПК, десятки ватт в домашних и автомобильных звуковых системах, сотни и более ватт в мощных домашних и концертных звуковых системах.В обычных аналоговых звуковых усилителях транзисторы в линейном режиме применяются для генерации выходного напряжения, которое точно масштабирует входное. Коэффициент передачи по напряжению обычно достаточно велик (около 40 дБ). Если усиление в прямом направлении входит в цепь с обратной связью, то и коэффициент усиления всей цепи с обратной связью будет велик. Обратная связь в усилителях применяется часто, так как большой коэффициент передачи в сочетании с обратной связью улучшает качество усилителя: подавляет искажения, вызванные нелинейностями в прямой цепи, и снижает шумы от источника питания за счет того, что снижается коэффициент влияния источника питания (PSRR).В обычном транзисторном усилителе транзисторы выходного каскада обеспечивают непрерывный сигнал на выходе. Существует множество различных инженерных решений для аудиосистем: усилители классов A, AB и B. Во всех, даже в самых эффективных, линейных выходных каскадах рассеивание мощности больше, чем в усилителях класса D. Это свойство усилителей класса D обеспечивает им преимущество в различных системах, так как малое рассеивание мощности означает меньший нагрев схемы, позволяет экономить место на плате, снижает стоимость и продлевает срок автономной работы батарей в портативных устройствах.

 

 

yamaha-petropavlovsk.ru

Усилители мощности по классом | Сабвуфер своими руками

Усилители класса А. Предварительные, маломощные каскады усиления напряжения и (или) тока не потребляют много электроэнергии и строятся поэтому с использованием самого простого, распространенного и хорошо понятного подхода. При этом все активные элементы схемы (т. е. транзисторы или лампы) потребляют от источника питания максимальный ток, независимо от того, присутствует ли на входе и выходе усилителя полезный сигнал. Усилители с таким режимом работы называют усилителями «класса А».

усилитель класса aУсилитель класса А обеспечивает наиболее высокое качество звуковоспроизведения и широко используется во всех каскадах современных ламповых усилителей, претендующих на категорию Hi-End. Недостатком усилителей класса А является низкий КПД: обычно не более 10 %.

Это значит, что усилитель с выходной мощностью 50 Вт будет непрерывно потреблять от домашней сети 500 Вт электрической мощности. Вся мощность, не преобразованная в звуковые колебания, выделяется на компонентах усилителя (транзисторы, лампы, резисторы и т. д.) в виде тепла. Стереофонический усилитель класса Л с мощностью по 50 Вт на канал превращается по своей тепловой эффективности в электроплитку или электрокалорифер.

ачх усилителя класса аПо этой причине усилители класса А часто проектируют с мощностью не более 10 Вт на канал. Выходной каскад, работающий в классе А, содержит единственный активный элемент. Поэтому такой выходной каскад часто называют однотактным. Иногда для увеличения выходной мощности в однотактных усилителях применяют 2 или 3 одинаковых элемента, соединенных параллельно.

В усилителе с выходным каскадом, работающим в классе А, через выходную лампу или выходной транзистор постоянно протекает максимальный ток. При подаче полезного сигнала на вход этого каскада (сетка лампы, затвор или база транзистора) электрические характеристики активного элемента изменяются. Это приводит к перераспределению тока, потребляемого от источника питания, между выходным каскадом и подключенным к нему громкоговорителем.

Усилитель класса В

усилитель класса BПоскольку в усилителе мощности основная мощность потребляется оконечным каскадом, изменяя режим работы этого каскада, можно значительно уменьшить общую потребляемую мощность. Такой подход применяется для построения двухтактных усилителей.

В выходном каскаде двухтактного усилителя содержится минимум два активных элемента, один из которых усиливает только положительную, а второй — только отрицательную компоненты входного сигнала.

В таком каскаде при отсутствии сигнала ток через выходные транзисторы или лампы вообще не протекает. Двухтактный каскад наиболее легко реализуется с помощью транзисторов с разным типом проводимости (электронного и дырочного типа). Пару идентичных по характеристикам, но различных по типу проводимости транзисторов называют комплементарными.

ачх усилителя класса B, DК сожалению, комплементарных пар ламп не существует, так как все лампы используют исключительно электроны, в отличие от полупроводниковых приборов, где возможна т. н. дырочная проводимость за счет направленной миграции вакансий в электронной подсистеме кристалла.

Поэтому реализация двухтактного каскада на лампах требует применения специальных выходных трансформаторов с симметричными обмотками. Усилитель с двухтактным выходным каскадом, работающим в указанном режиме, называют усилителем «класса В». По-английски двухтактный усилитель называют «push-pull amplifier» (буквально — «тяни-толкай»).

Усилители класса АВ

как работает усилитель класса abРазновидность усилителя класса В с небольшим (менее 10 % от максимального) начальным током выходного каскада для уменьшения искажений называют усилителем «класса АВ». К этому классу относится подавляющее большинство всех промышленных транзисторных усилителей, а также ламповых усилителей мощностью более 20 Вт.

Типичное значение КПД усилителя класса В или АВ составляет примерно 50 %. То есть, усилитель, отдающий в нагрузку 50 Вт мощности, потребляет 100 Вт от домашней сети. Подчеркнем: в момент появления сигнала. При отсутствии сигнала и при его малых значениях потребляемая мощность задается током покоя выходных элементов и может составлять от 1 до 10 % от максимальной полезной мощности. Таким образом, двухтактные усилители класса В или АВ оказываются намного экономичнее усилителей класса А.

Двухтактный выходной каскад при высокой симметрии «плеч» обеспечивает подавление в выходном сигнале четных гармоник. Это существенно понижает общий коэффициент нелинейных искажений по сравнению с однотактными усилителями. Снижение уровня гармоник происходит, главным образом, за счет подавления второй гармоники, доминирующей обычно в спектре искажений «однотактников». Иногда в двухтактных усилителях класса АВ используют большое значение тока покоя, переводя усилитель в класс А для малых сигналов, соответствующих выходной мощности около 1 Вт.

Многие эксперты отмечают особую важность качества «первого ватта» для повышения естественности звуковоспроизведения. Важность первого ватта связана с тем, что при типичной чувствительности головки громкоговорителя на уровне 90 дБ/Вт мощности в 1 Вт достаточно для комфортного прослушивания негромкой (камерной, джазовой) музыки. В рекламных целях некоторые производители объявляют усилители такого типа усилителями класса А, что не совсем верно, если не уточняется до какого уровня мощности действительно сохраняется режим класса А.

Усилители класса D,G,H,T

usiliteli-klassa-dСуществуют и другие классы усилителей, предназначенные для усиления звука с максимально возможным КПД. Они обозначаются буквами D, G, Н, Т. В высококачественной аппаратуре такие типы усилителей не используются.

При этом некоторые из них могут иметь объективно высокие параметры (например, низкое значение коэффициента нелинейных искажений). Усилители класса Н в виде мощных интегральных схем используются в некоторых конструкциях автомобильных сабвуферов. Усилители класса D используют широтно-импульсную модуляцию (ШИМ): преобразование сигнала на входе в последовательность коротких импульсов различной длительности и обратное восстановление на выходе усилителя.

Несколько лет назад появились ШИМ-усилители с обозначением «класс Т» в виде мощных интегральных схем и были разрекламированы как высококачественные системы. Автор этой книги приобрел такой усилитель. При напряжении питания 12 В усилитель отдавал в нагрузку до 10 Вт мощности, рассеивая на корпусе микросхемы всего 1 Вт (т. е. КПД около 90 %!). Однако звучание усилителя качественным назвать нельзя: при прослушивании создается впечатление, что кроме музыки в помещении непрерывно работает распылительный аэрозольный баллончик.

Мостовые усилители

Для повышения мощности (в 2—4 раза) при неизменном напряжении источника питания иногда применяют мостовое включение двух полноценных усилителей. В этом случае на вход каждого усилителя подаются в противофазе две полные копии входного сигнала, а на нагрузке выходные напряжения складываются, что и обеспечивает в идеале 4-кратное увеличение выходной мощности. Для формирования двух противофазных копий входного сигнала требуется дополнительный каскад. В мостовом усилителе так же, как и в двухтактном выходном каскаде, подавляются четные гармоники.

Мостовые усилители широко используются в автомобильной аудиотехнике, позволяя получать до 50 Вт выходной мощности на нагрузке 2—4 Ом при напряжении питания 14 В. По мнению автора этой книги, сфера применения мостовых усилителей не должна ограничиваться низковольтными устройствами. Мостовые усилители хорошо звучат, и достигается это, по-видимому, не столько за счет снижения уровня четных гармоник, сколько из-за исключения связи силовой «земли» с нагрузкой. В мостовой схеме катушка громкоговорителя подключается непосредственно к двум «горячим», т. е. «неземляным» клеммам каждого из усилителей. Как известно, гальваническая связь сигнальной и силовой «земли» порождает помехи, связанные с воздействием переходных процессов на выходе усилителя на форму сигнала на его входе.

Обратная связь

В абсолютном большинстве транзисторных усилителей достижение высоких объективных (т. е. измеряемых с помощью электронных приборов) характеристик (не звучания, а именно характеристик) достигается применением глубокой общей отрицательной обратной связи (ООС), охватывающей полностью усилитель мощности с входной чувствительностью около 1 В. Альтернативный подход, сторонником которого является и автор этой книги, состоит в отказе от общей ООС в аудиоусилителях. Поэтому, кроме классификации по режиму работы оконечного каскада (класс А, В, и т. д.), усилители классифицируют еще и по наличию-отсутствию общей ООС.Все рекомендуемые ламповые каскады работают в классе А. А вот для оконечных транзисторных каскадов будут предложены варианты как класса А, так и класса АВ.

www.radiochipi.ru

Выбор усилителя и акустической системы - Аудиоалхимия

Дорогие друзья, сегодня я расскажу о том, как подобрать усилитель для своей акустической системы. Вы узнаете о том, что такое усилитель, что означает на самом деле мощность, какие бывают классы усиления и затронем тему "лампового звука". УМЗЧ - или усилитель мощности звуковой частоты - устройство для усиления электрических колебаний, соответствующих слышимому человеком звуковому диапазону частот (обычно от 16 до 20 000 Гц, в специальных случаях — до 200 кГц). Может быть выполнен в виде самостоятельного устройства, или использоваться в составе более сложных устройств - например активных мониторов или сабвуферов. Далее будем этот компонент системы называть просто "усилитель". Как уже ранее мы смотрели, в любом источнике сигнала (даже в проигрывателе винила или магнитофоне) считываемый сигнал имеет очень малую мощность. Для передачи его другим компонентам системы необходимо его усилить до определенного уровня. Для этого служит предусилительный выходной каскад. Так в стандарте hi-fi при передаче по небалансному/несимметричному подключению среднеквадратичное (или т.н. эффективное) напряжение должно составлять 1.5В. Мощность при этом составляет несколько миливатт. Естественно, что этого не достаточно для работы акустической системы. Для увеличения мощности и служит усилитель.  Существует огромное многообразие усилителей. Среди них по назначению выделяются следующие
  • интегральные усилители
  • усилители мощности
  • предусилители
Интегральный усилитель = предусилитель + усилитель мощности. Иными словами : предусилитель - это регулятор уровня маломощного сигнала (низкоуровнего), а усилитель мощности - усиливает входящий сигнал на некоторую максимальную фиксированную величину. Кстати, говоря, ресивер - это тоже интегральный усилитель, но многоканальный и с цифровым обработчиком звука и видео (DSP). Возникает вопрос : зачем разделять предусилитель от усилителя мощности? Я знаю только лишь две уважительные причины : большие габариты, например ламповые моноблочные усилители мощности, и эксперименты с гибридным усилением, например ламповый предусилитель и транзисторный "мощник". В остальных случаях это лишь маркетинговый ход, который зачастую несет только ухудшение звука из-за удлинения пути звукового тракта. Как вы уже догадались, существует 3 типа усилителей:
  1. Ламповые
  2. Транзисторные
  3. Гибридные
Существует огромное разнообразие ламповых усилителей, но как правило им присущи характерные особенности:
  • относительно малая мощность - подходит только для высокочувствительных АС
  • тональное окрашивание звука - не всегда, но бывает
  • "мягкость звука", которая является следствием обогащения 2-й гармоникой
  • жанровость - за счёт предыдущего пункта, хорошо удается камерная музыка, но проваливается на забойном метале
О транзисторных в общем-то ничего особо не расскажешь:
  • как правило имеют нейтральный тональный баланс без прикрас
  • "музыкальность" очень сильно варьируется, как правило зависит от класса усиления
  • относительно высокая выходная мощность
Гибридные усилители - любопытные устройства. Таким примером может служить Vincent 236. Ламповый предусилитель и транзисторный "мощник" в одном корпусе. Если рассмотреть конкретно такую схему, то получим следующую солянку свойств от каждого типа:
  • небольшое "размягчение" звука
  • легкий окрас на ВЧ
  • высокая выходная мощность
Каждый тип усилителей имеет своих поклонников. Лично я склоняюсь к наиболее честному звуку - а значит к чистому транзисторному. Рассмотрим теперь подробнее характеристику мощности усилителей. Для этого нам придется познакомиться с классами усиления.Класс усиления - это принцип работы усиления в электроцепи усилителя. Существует около десятка разных классов усиления,  заострю внимание только на следующих, поскольку они наиболее распространены:
  • Класс A
  • Класс AB
  • Класс B
Эта классификация зародилась еще в ламповую эпоху и в силу разных типов транзисторов, дабы не путаться, я разберу её именно на примере лампы. Но сперва напомню о том, что такое вакуумная лампа и с чем ее едят. Типичная применяемая в усилителях электронная лампа (tube, valve) состоит из стеклянной колбы с откачанным воздухом в которую помещены два электрода (катод - cathode и анод - anode) и разделяющая их сетка, за катодом находится также специальный подогревающий элемент. Поскольку между катодом и анодом вакуум и существенное по меркам микромира расстояние, то ток при относительно небольшом напряжении между ними возникнуть не может. Подогревая катод, мы повышаем скорость движения в нем электронов. В этом случае анод уже в принципе способен притянуть к себе электроны с катода. В двухэлектродных лампах (диодах - элементах с односторонней проводимостью) так и происходит. В триоде, однако расстояние между катодом и анодом больше чем в диоде, и ток просто так не возникнет. Для этого приходит на помощь сетка. Если подать на нее некоторое напряжение (много меньшее, чем напряжение между катодом и анодом), то она, будучи расположенной ближе к катоду, чем анод, начнет срывать с него электроны.  Размеры сетки превышают размер электрона больше, чем оконная решетка размеры пылинки, и почти все электроны влетают в ячейки сетки, но притянуться собственно к ней не успевают. Между анодом (к которому соответственно они приблизились) и сеткой существует напряжение (чуть меньше, чем между анодом и катодом, но почти такое же) и анод тянет эти электроны к себе - то есть возникает ток между анодом и катодом. Соотвественно, если напряжение, на сетке будет переменным, то ток через лампу будет меняться параллельно с ним. Сформулируем это с практической точки зрения - слабый переменный сигнал подаваемый в цепь катод-сетка, порождает в лампе свою усиленную копию. Конечно, собственно лампа, как есть - это еще не усилитель, хотя бы потому, что ток через нее может идти только в одном направлении, и от переменного сигнала будет усиливаться только половина полупериодов. Самое простое решение этой проблемы - подача на триод, так называемого смещения - напряжения на сетке (точнее - разность потенциалов между сеткой и катодом). Результатом станет то, что у входной сигнал весь окажется в "правильной зоне". Усилитель в котором реализуется такой принцип называют усилителем класса А. Недостатки усилителя класса А - пониженный КПД (только 50% от питающего напряжения), повышенный расход энергии и как следствие - большое тепловыделение. Этих недостатков лишены двухтактные схемы, основанные на двух одинаковых триодах, включенных параллельно. В таких решениях сигнал перед подачей на усиливающий контур "разрезается" на две половины. Каждый триод усиливает свои полупериоды, а выходные сигналы затем "сшиваются" в полноценный сигнал, при этом энергия потребляется исключительно в необходимых пропорциях. Такие усилители называются усилителями класса В. У них правда свои недостатки. Они плохо работают в области близкой к нулевому значению входного сигнала, то есть некачественно усиливают тихие звуки. Выходом из этой ситуации является подача небольшого смещения на каждый триод. Получается компромиссный вариант, именуемый усилителем класса АВ, к которому относится большинство популярных Hi-Fi усилителей. Отметим, что схемы усилителей класса B и АВ не в пример сложнее, чем у усилителей класса А, поскольку "разрезание" и "склеивание" сигнала требует определенных ухищрений. Итак, мы поняли, что класс А - хорошо, но мощности мало, а АВ -  хоть и хорошо, но не всегда идеально. Пора понять, сколько реально нам надо мощности. Но когда начинаешь искать ответ, глядя на паспортные характеристики АС или спрашивая продавца, закрадываются сомнения. Думаю все сталкивались с "китайскими" ваттами. Пора внести ясность.Теперь вы уже немного понимаете, что такое усилитель и с чем его едят :) Пора рассказать о том, что же означает мощность, значения которой так часто красуются на наклейках на музыкальных центрах, колонках или скромно пишутся в паспортных данных. Можно встретить 5 (!) различных характеристик мощности:
  1. Максимальная кратковременная мощность (МКМ) - электрическая мощность специального шумового сигнала в заданном диапазоне частот, которую АС выдерживает без необратимых механических повреждений в течение 1 секунды (испытания повторяют 60 раз с интервалом в 1 минуту)
  2. Максимальная долговременная мощность (МДМ) - электрическая мощность специального шумового сигнала в заданном диапазоне частот, которую АС выдерживает без необратимых механических повреждений в течение 1 минуты (испытания повторяют 10 раз с интервалом в 2 минуты)
  3. Максимальная синусоидальная мощность (МСМ) - электрическая мощность непрерывного синусоидального сигнала в заданном диапазоне частот, которую АС длительновыдерживает без тепловых и механических повреждений
  4. Максимальная шумовая мощность (МШМ) - электрическая мощность специального шумового сигнала в заданном диапазоне частот, которую АС длительно выдерживает без тепловых и механических повреждений
  5. Номинальная мощность (НМ) - это заданная электрическая мощность, при которой нелинейные искажения АС не должны превышать требуемые
Эмпирически найдены следующие соотношения между этими величинами:
  • МСМ ~ МКМ/4
  • МШМ ~ МКМ/16
  • НМ << МШМ
 Как могли уже некоторые догадаться, максимальная шумовая мощность (МШМ) является той величиной, которая отражает реальную мощность акустической системы, поскольку шум и музыка со спектральной точки зрения имеют много общего. К сожалению, большинство производителей указывают именно МКМ. Её значения гордо красуются в надписях типа "500W PMPO" или просто "300W". Если в паспорте на АС нет точной расшифровки, какая именно это мощность, а просто указана цифра, можете быть уверены, что это МКМ. Если подать на "300-ваттные" АС сигнал мощностью 300 ватт, то через секунду-две они выйдут из строя. Чтобы оценить предельную реальную мощность АС вспомним о соотношениях выше. То есть для АС Monitor Audio RX6 с 125вт МКМ предельной мощностью на спектрально плотной музыке (например блэк-метал) будет всего лишь 7,8вт! Для более простой, спектрально разряженной, допустимо соотношение 1/10, т.е.12,5вт. Я хочу напомнить, что сейчас речь идёт именно об "электрических" ваттах, т.е. тех, что подаются от усилителя к АС. Для перехода к звуковой громкости мы должны познакомиться с понятием звуковое давление (SPL). На расстоянии 1м от пары АС звуковое давление имеет следующую величину: SPL = [чувствительность АС] + [10 х log(МШМ)] + 3 и измеряется в децибеллах - дБ. Возьмём к примеру АС с чувствительностью 87дБ. Такая чувствительность широко распространена среди современных акустических систем. Тогда в 1м от стереопары звуковое давление может быть развито не более чем до 100дБ. 100дБ - это концертная громкость. Казалось бы всё здорово! Однако вспоминаем о том, что это расстояние 1м и никто так близко не сидит к АС. Кроме того, комната для прослушивания имеет свойство приглушать звук. Плюс к этому дифракция звуковых волн способствует существенному рассеиванию мощности в разные направления (исключение только для рупорных). В итоге максимальное звуковое давление едва ли превысит 90дБ в реальных условиях на расстоянии 2-3 метров. Это позволяет нам с уверенностью сказать, что данная АС не сможет полноценно озвучить помещение большого размера. Если же рассмотреть менее чувствительные АС, то результаты будут еще более удручающими.Если вы встречали ранее мнение, что для низкочувствительных АС "всего лишь" нужен более мощный усилитель, то теперь вы понимаете , что каким бы мощным усилитель не был - большинству модных современных АС это как мертвому припарка. Я не стал разбирать вопросы согласования сопротивлений - это в принципе вообще не проблема для хорошо спроектированных усилителей и акустических систем, хотя возможно в будущем посвящу этому статью для ликбеза. Возвращаясь к нашей повестке дня, выводы напрашиваются сами собой:
  • выбирать приходится между винтажной (20-го века) акустикой и самодельной/авторской, желательно с чувствительностью более 90дБ
  • подбирать транзисторный усилитель в классе А, в случае необходимости потом уже рассматривать АВ (коими почти все и являются на рынке)
Что касается соотношения выходной мощности усилителя и МШМ, то необходимо всегда иметь большее значение выходной мощности усилителя. Это нужно не для того , чтобы слушать очень громко, а чтобы усилитель мог адекватно передавать пики нагрузки на нормальной громкости. При чём , чем чувствительность ниже, тем соотношение мощностей усилителя/АС должно быть больше. Я знаю, что некоторые со мной не согласятся по выводам, но достаточно провести прямое сравнение , чтобы убедиться в вышесказанном. Да, подходящие под описанные требования компоненты могут дорого обойтись, но знание  того, куда стремиться, дает возможность выбора между хорошей и плохой системой, а не между плохой и совершенно убогой. Лично мои поиски идеального звука пока остановились на АС TKB-10D и усилителе Musatoff PA-6.

alchemyru.livejournal.com