Пневматический привод трубопроводной арматуры. Колонка управления ручной и пневматический привод


ПНЕВМАТИЧЕСКИЙ ПРИВОД

Это обусловлено тем, что давление в 8 бар и выше не всегда возможно гарантировать. Пониженное давление требует большого диаметра поршня или мембраны, для получения необходимого крутящего момента или усилия, следовательно и большего размера самого привода, что ведёт к его удорожанию.

Пневмоприводы бывают двух типов:

- одностороннего действия ( с возвратными пружинами)

- двухстороннего действия

Пневмопривод одностороннего действия может быть:

- нормально-открытый открывает с помощью усилия сжатого воздуха, а закрывает с помощью усилия возвратных пружин.

- нормально-закрытый открывает с помощью усилия пружин, а закрывает с помощью усилия сжатого воздуха.

Пневмопривод двойного действия открывает и закрывает с помощью усилия сжатого воздуха.

Пневматические приводы по заказу комплектуются дополнительным оборудованием:

- соленоидный клапан (или управляющий клапан)

- ручной дублёр

- концевые выключатели

- позиционер

 

Применение пневмоприводов

Пневматические приводы применяются в металлургической, газовой, нефтяной, нефтеперерабатывающей, нефтехимической, химической отраслях промышленности, в коммунальном хозяйстве, на трубопроводах пара и горячей воды.

 

Достоинства пневматических приводов

-Пожаро- и взрывобезопасность. Благодаря этому достоинству пневмопривод не имеет конкурентов во взрывоопасных условиях эксплуатации, например в шахтах с обильным выделением метана, в химическом производстве и т.д.

-Надежность работы в широком диапазоне температур, в условиях пыльной и влажной окружающей среды.

-Большой срок службы. -Высокая скорость открытия/закрытия и возможность её регулирования

Диапазон температур

Пневмоприводы работают в диапазоне температур от -20°С до 80°С, но диапазон может быть расширен от -40°С до 120°С при дополнительном выборе специальных подшипников, смазки и уплотнений. Так же в низкотемпературных условиях работы необходимо учитывать появление конденсата. Конденсат может замёрзнуть и заблокировать воздушные магистрали, что приведёт к отключению привода.

 

Подбор пневмопривода

Для корректного подбора пневмопривода необходимо знать следующие данные:

1. Максимальный крутящий момент (для поворотных клапанов) или усилие которое необходимо оказать на шток (для прямоходных клапанов).

2.Давление в пневмомагистрале которое подводится к приводу. Если давление переодически изменяется, то необходимо брать наименьшее значение.

  Для подбора пневмопривода одностороннего действия необходимо максимальный крутящий момент клапана или максимальное усилие, для прямоходных клапанов, увеличить на 30%, затем в таблице усилий приводов в колонке усилие пружины 0° выбирается привод соответствующее данному моменту или усилию, при соответствующем давлении воздуха в пневмомагистрале.

Для подбора пневмопривода двухстороннего действия необходимо максимальный крутящий момент клапана или максимальное усилие, для прямоходных клапанов, увеличить на 20 - 30% и выбрать привод который соответствует этому значению крутящего момента или усилия, при соответствующем давлении воздуха в пневмомагистрале.

 

Примеры установки пневмоприводов

 

                                                                                                       

                             Рис. 1 Клапан с пневмоприводом.                                        Рис. 2 Заслонка поворотная с пневмоприводом

 

 

 

www.nemen.ru

Затвор с пневмоприводом и ручным дублером: устройство и принцип работы

Отрегулировать подачу и запирание потока можно путем установки специального запорного механизма, который называется затвором. Конструкция классифицируется по достаточно большому количеству признаков, о которых далее поговорим подробнее.

Содержание

Особенности дискового затвора Принцип действияПреимущества и недостаткиОсобенности пневматического привода

Особенности дискового затвора

затвор с приводом

Затвор дискового типа является запирающим, а не регулирующим устройством. Особенности конструкции заключаются в нижеприведенных моментах:

  1. Конструкция имеет корпус, который предназначается для защиты внутреннего механизма. При изготовлении корпуса может использоваться чугун или высокоуглеродистая сталь. Как правило, форма корпуса определяет возможность подключения устройства к трубе, регулирующий элемент отводится вверх.
  2. Запорный механизм представлен диском, который может иметь плоскую и выпуклую форму. Именно диск преграждает путь потоку, а также регулирует пропускную способность устройства.
  3. Управление запорным механизмом проводится через ось, которая жестко крепиться к диску. Поворотная ось крепиться в верхней части, в нижней расположили упорный винт.
  4. Для того чтобы обеспечить фиксацию поворотного винта в корпусе размещаются различные уплотнители и втулки, манжеты. Они также не позволяют жидкости выходить наружу через регулирующий механизм.
  5. Запирающий диск может быть расположен под различным углом относительно потока. Для этого используется ручной дублер. Следует учитывать, что поток создает сильное давление на запирающий диск, в результате чего для его поворота требуется прилагать довольно большое усилие. Чтобы решить эту проблему устанавливается пневматический привод. Он может существенно увеличивать передаваемой усилие на поворотный шток.

При изготовлении запорного механизма применяется высококачественная сталь и чугун, а также резина. Данные материалы подходят по причине того, что могут выдерживать воздействие повышенной влажности и сильного давления.

Принцип действия

строение затвора с приводом

Популярность запорных дисковых механизмов связана прежде всего с простотой устройства и ее практичностью в применении. Принцип действия затвора следующий:

  1. Рабочая камера представлена небольшим цилиндром с различными уплотнителями.
  2. Поворотный диск может находится практически пол любым углом относительно потока. Однако производители рекомендуют эксплуатировать устройство только в отрытом или закрытом положении для снижения степени износа.
  3. Устанавливать угол поворота диска можно при помощи рукоятки вручную или от пневматического привода дистанционно. Отметим, что ручное управление встречается исключительно в системах, где поток подается не под большим давлением. Это связано с тем, что нагрузка, которая оказывается на запирающий элемент, может быть очень большой, и провести поворот диска можно только через пневматический привод.
  4. Пневматический привод представлен системой, в которой рабочий воздух или газ подается под большим давлением. Давление создается насосом, который имеет подвижный элемент, усилие на него передается от электрического двигателя.

Принцип действия определяет то, что устройство может прослужить многие годы без появления неисправностей.

Преимущества и недостатки

затвор с пневмоприводом

У данного устройства есть довольно много преимуществ:

  1. Совместимость устройства с различными трубами. При этом в продаже можно встретить модели, диаметр которых может варьировать в достаточно большом диапазоне.
  2. Ремонтопригодность устройства. Практически любой сантехник может провести ремонт дискового затвора с пневматическим или иным приводом. Конструкция имеет исключительно один подвижный элемент и уплотнители, которые подвержены износу.
  3. Небольшие габариты. На участке системы, где нужно сэкономить свободное пространство, именно этот тип запорного механизма наиболее применим. Кроме этого из-за уменьшения габаритов снижается и вес конструкции.
  4. Особенности запорного механизма определяют то, что они могут быть весьма большого диаметра.

Однако есть и один существенный недостаток: в открытом положении запорный механизм создает дополнительное сопротивление, что снижает эффективность системы и не позволяет использовать затвор в системе, в которой скорость потока весьма велика.

Особенности пневматического привода и выгода от его использования

затвор с пневмоприводом

Как ранее было отмечено, механический ручной привод применим только в случае, если трубопровод не имеет большой диаметр и поток не перемещается при большой скорости. Пневматический привод представлен следующими конструкциями:

  1. Пневматический блок. Он предназначен для преобразования энергии сжатого воздуха в кинематическую энергию. Блок герметичный, представлен корпусом, который крепится на поворотном штоке.
  2. Редуктор. Для преобразования возвратно-поступательного движения устанавливается специальный редуктор. Он принимает движение поршня, на которое воздействует сжатый воздух, после преобразует в крутящий момент.
  3. Редуктор может не только преобразовывать возвратно-поступательное движение, но и повышать усилие, исходящее от пневматического устройства.

Выгоды от использования пневматического привода довольно много:

  1. Рассматриваемая разновидность затвора имеет меньшие габариты, чем устройство с механическим приводом. Компактность является достоинством дискового затвора.
  2. Есть возможность установить устройство удаленного дистанционного управления. Это позволяет применять затвор на магистрали с довольно большой протяженностью. Кроме этого устройство применимо в случае, если рабочая среда токсична или химически агрессивна.
  3. Система обладает весьма высокой экономичностью и эффективностью, что позволяет снизить затраты на применении и обслуживании.

Однако усложнение запорного механизма становится причиной, по которой увеличивается сложность обслуживания и стоимость проведения работы. Именно поэтому диагностику, обслуживание и ремонт следует доверять исключительно профессионалам, которые специализируются на предоставлении подобной работы.

oborudovanie1.ru

Пневматический привод трубопроводной арматуры

Пневмоприводы трубопроводной арматуры

Пневмоприводы трубопроводной арматуры

Механизация, автоматизация, а сегодня уже и роботизация производственных процессов ─ магистральное направление научно-технического прогресса. В полной мере оно касается трубопроводной арматуры. Использование механизированных приводов позволяет решать широкий комплекс задач.

Появляется возможность на порядок увеличить производительность трубопроводных систем и технологического оборудования, частью которого они являются. Снижаются эксплуатационные расходы. Обеспечивается высокая эффективность управления трубопроводными системами, даже если они представляют собой сложные разветвленные коммуникации, а входящие в их состав технические устройства рассредоточены на значительных площадях и большом удалении от пультов управления.

Определяя, какому приводу отдать предпочтение, чтобы отыскать технически обоснованное и экономически целесообразное конструктивно-технологическое решение, во внимание принимают следующие факторы:

  • назначение и состав трубопроводной системы;
  • режим ее работы и, прежде всего, интенсивность эксплуатации;
  • месторасположение в трубопроводной системе единицы арматуры, управляемой данным приводом;
  • досягаемость и удобство обслуживания привода;
  • наличие в трубопроводной системе других приводов;
  • возможности энергообеспечения: доступность источников энергии и ее себестоимость;
  • экономическая целесообразность использования конкретного привода с учетом всех влияющих на это факторов.

Очень часто, взвесив все «за» и «против», проектировщики останавливают свой выбор на пневматическом приводе.

Использующие в большинстве случаев сжатый воздух и реже другие газы, пневматические приводы для трубопроводной арматуры с успехом применяются для управления всеми ее типами. Как неполноповоротной (кран, дисковый затвор), так и прямоходной ─ пневматический привод клапанов и задвижек.

Затворы с пневмоприводом

Устройство пневмопривода

Устройство пневматического привода трубопроводной арматуры конструктивно проще электрического, что является одним из его преимуществ. В состав пневмопривода трубопроводной арматуры, как сказано в «СТ ЦКБА 090-2013. Арматура трубопроводная. Пневмоприводы и гидроприводы. Общие технические условия», «входит пневматический механизм, в котором рабочая среда находится под давлением, с одним или несколькими объемными пневмодвигателями». Объемный пневмодвигатель ─ объемная пневматическая машина, преобразующая поток рабочей среды в энергию выходного звена. Таковым могут быть плунжер, шпиндель, шток. Наряду с объемными пневмодвигателями есть турбинные. В них, в отличие от использующих потенциальную энергию сжатого воздуха объемных двигателей, задействована кинетическая.

Конструкция пневмопривода

Пневматические приводы для трубопроводной арматуры комплектуются различными устройствами, размещаемыми как непосредственно на конструкции пневмопривода, так и в специальном шкафу, имеющем штуцеры для подвода-отвода управляющей среды. Ручной дублер, предназначенный для управления арматурой в случае выхода пневмопривода из строя или потери воздушной энергии, устанавливают:

  • в пневмоприводах поршневого типа ─ на верхней крышке;
  • в мембранных приводах обратного действия ─ сбоку на стойке;
  • в мембранных приводах прямого действия ─ на верхней чашке.

В ряде случаев (например, если это шаровой кран с пневмоприводом, для которого очень важно гарантированно точное положение шара в положении «открыто» или «закрыто») обязательной опцией пневмопривода является регулируемая остановка при открытии-закрытии, обеспечиваемая путевыми выключателями. Поэтому пневмоприводы комплектуются путевыми и концевыми переключателями, изменяющими свое коммутационное положение при соответственно заданных и крайних положениях подвижных частей арматуры.

Пневмоприводы комплектуются встроенными фильтрами для очистки управляющей среды от механических примесей, а пневмоприводы вращательного (неполноповоротного) действия со струйным двигателем, управляемым транспортируемым газом, ─ фильтрами-осушителями.

Схема пневматического привода может предусматривать установку аккумуляторов для накопления воздуха, способных обеспечить однократное или многократное срабатывание, если применение пружин нежелательно или недопустимо.

Классификация. Типы пневмоприводов

Пневматический привод после своего изобретения применялся и продолжает применяться для приведения в действие различных механизмов: транспортных средств (автомобилей, железнодорожных локомотивов, трамваев), технологических установок и инструмента. Важная область его использования ─ управление трубопроводной арматурой. Конструкция пневмопривода постоянно совершенствовалась, и со временем от основного «ствола» успели отойти несколько ветвей-направлений. А в таких случаях, чтобы систематизировать разнообразие конструктивных решений, прибегают к помощи классификации. В целом близкие на нее взгляды двух нормативных документов «ГОСТ 24856-2014. Арматура трубопроводная. Термины и определения» и уже упоминавшегося выше «СТ ЦКБА 090-2013» все-таки имеют некоторые отличия.

Согласно первому документу в зависимости от конструктивного исполнения пневмоприводы бывают: поршневые; мембранные; сильфонные; струйные; лопастные

Пневмоприводы

В зависимости от принципа действия они разделяются на:

  • односторонние;
  • двухсторонние;

а в зависимости от движения выходного звена ─ на приводы:

  • поступательного движения;
  • поворотного движения.

Второй нормативный документ по типу конструкции делит пневмоприводы на три большие группы:

  • поршневого типа;
  • мембранного типа;
  • вращательного типа.

Пневмоприводы типы

Согласно нему в зависимости от назначения (условий эксплуатации) пневмоприводы могут изготавливаться в трех исполнениях:

  • нормального (общепромышленного) назначения;
  • во взрывозащищенном исполнении;
  • повышенной безопасности для АС (атомных станций).

Пневмоприводы поршневого типа

СТ ЦКБА 090-2013 разделяет пневмоприводы поршневого типа на две группы:

  • двустороннего (возвратно-поступательного) действия ─ когда рабочий ход осуществляется под воздействием сжатого воздуха;
  • одностороннего действия ─ когда рабочий ход осуществляется под воздействием сжатого воздуха, а холостой ─ с помощью пружин.

Пневмоприводы поршневого типа одностороннего действия распадаются на пружинные прямого и обратного действия. У первых при повышении давления рабочей среды над поршнем он удаляется от верхней крышки, у вторых ─ напротив, приближается к ней.

Пневмоприводы поршневого типа, состоящие из цилиндра и поршня, уплотненного эластомерными кольцами, обеспечивают линейное перемещение штока исполнительного механизма на большое расстояние. Привод поршневой пневматический имеет немало достоинств: небольшое количество деталей, а, значит, простота конструкции, возможность получения больших усилий при прямолинейном ходе штока, быстродействие. Повышение точности и улучшение динамических параметров обеспечивается использованием позиционеров.

Пневмоприводы мембранного типа

Пневмоприводы мембранного типа распадаются на три категории:

  • беспружинные;
  • пружинные прямого действия;
  • пружинные обратного действия.

У пружинных пневмоприводов прямого действия при увеличении давления управляющей среды в рабочей полости механизма присоединительный элемент выходного звена отдаляется от плоскости заделки мембраны; у пружинных обратного действия, напротив, приближается к ней.

Мембранный пневмопривод представляет собой герметичную камеру, разделенную мембраной на две полости. Ведомое звено получает импульс движения от жидкости или газа посредством эластичной (упругой) мембраны, изготовленной из металла и неметаллических материалов: резины или полимеров (полиэтилен, фторопласт и проч.).

Пневмоприводы вращательного типа

Среди пневмоприводов вращательного типа выделяют три вида вращательных приводов неполноповоротного действия:

с реечно-зубчатым зацеплением; лопастные; со струйным двигателем.

Отдельный вид составляют вращательные пневмоприводы многооборотного действия.

Для увеличения срока службы реечное зацепление по всей длине покрывают никелевым покрытием.

В приводах лопастного типа подаваемый на привод воздух действует на лопасть, соединенную со штоком арматуры, создавая необходимый для поворота крутящий момент.

Достоинства струйных двигателей: простота конструкции и технологии изготовления, небольшие габариты, широкий диапазон применения по температуре и давлению газа, высокий КПД, малая подверженность загрязнению.

Сильфонные пневматические приводы

Работа пневматического привода сильфонного типа основана на способности сильфонов изменять свою длину под воздействием давления среды. Сильфонные приводы ─ приводы одностороннего действия. Возможна установка дополнительной пружины возврата. Область их применения ─ трубопроводная арматура небольшого размера. Для управления большой арматурой сил сильфонного пневматического привода будет недостаточно. Наряду с небольшим усилием свойствами сильфонных приводов являются ограниченный ресурс и невысокая ремонтопригодность.

Как прямолинейное движение преобразовать во вращательное

Для того, чтобы управлять неполноповоротной арматурой, пневмоприводы должны уметь преобразовывать поступательное движение во вращательное. Существует несколько типов механизмов, позволяющих это сделать.

В кулисно-поршневом пневмоприводе два поршня соединены штоком и кулисой. Дисковые затворы и шаровые краны с пневмоприводом часто оснащены именно кулисно-поршневым механизмом. В реечно-поршневом приводе один или два поршня (если два, удается получить больший крутящий момент) соединены рейкой, входящей в зацепление с зубчатым колесом, находящемся на одной оси с валом, что обеспечивает постоянный крутящий момент в течение всего хода. Идеально подходят для поворота вала на 90 и даже 180 градусов.

Рычажно-поворотный привод, представляющий ось, соединенную с цилиндром через рычаг, действующим на шток арматуры, по своим параметрам близок к кулисно-поршневому приводу. Но наличие движущихся деталей, которые в целях создания безопасных условий труда необходимо закрывать кожухом, делают его менее популярным.

В пневмоприводе с кулачковым механизмом поворот осуществляется в соответствии с профилем кулачка, расположенного между двумя поршнями. Параметры крутящего момента постоянны на протяжении всего хода.

Преимущества пневматического привода

Одно из главных преимуществ пневмопривода ─ сжатый воздух, экономичная и удобная форма хранения энергии. При необходимости его можно сбрасывать в атмосферу без опаски нанести ущерб окружающей среде.

Прямое следствие физических свойств сжатого воздуха ─ быстродействие пневматического привода, особенно актуальное, когда фактор скорости закрытия запорного рабочего органа критически важен в силу условий безопасности (отсечной клапан с пневмоприводом). Пневмоприводы в целом отличаются бо́льшим быстродействием, чем электроприводы.

Еще одно достоинство пневмопривода ─ хорошая управляемость. Скорость вращения легко регулировать изменением расхода воздуха. Простота монтажа и настройки позволяют широко применять пневмоприводы для управления регулирующей трубопроводной арматурой (например, регулирующий клапан с пневмоприводом). Особенно хорошо для этого подходят мембранные приводы с пружинами.

Важное качество пневматического привода ─ надежность. Если электропривод при перегрузке может выйти из строя, то пневмопривод просто остановится или будет работать вхолостую. Пневмопривод в течение продолжительного срока эксплуатации может обходиться минимальным техническим обслуживанием.

Простая, в т. ч. благодаря отсутствию вращающихся деталей конструкция имеет сравнительно низкую стоимость.

Следствием простоты (конечно же сравнительной и относительной) технического устройства пневмопривода является целый комплекс его качеств: простота монтажа, настройки и эксплуатации, надежность, взаимозаменяемость элементов конструкции, несложный ремонт пневматического привода, удобное управление пневмоприводами.

Еще одно следствие этого качества пневмопривода ─ продолжительный, измеряемый миллионами циклов, срок эксплуатации.

Пневмопривод ─ очень «демократичное» оборудование, легко взаимодействующее с почти любой арматурой, кроме самой большой, где на помощь ему приходит в чем-то родственный гидропривод (гидравлические и пневматические приводы имеют значительное, хотя и не абсолютное конструктивное сходство).

Использование пневмопривода позволяет обеспечить высокий уровень автоматизации производства, а, значит, решение широкого круга технологических задач.

Нужно только учитывать, что если управление пневматическим приводом установлено на арматуре, находящейся на достаточно большом расстоянии от компрессора, давление в воздушной сети может снижаться, поэтому, выполняя расчет пневмопривода, к крутящему моменту добавляют запас в несколько десятков процентов от номинального значения.

Но, пожалуй, наиболее отчетливо проявляющееся достоинство пневмопривода ─ его безопасность, в т. ч. в условиях пожароопасных и взрывоопасных рабочих сред. Перегрузка пневмопривода не приводит к его перегреву. Пневматическое оборудование не способно послужить источником пожара или возгорания даже в условиях повышенной взрыво- и пожароопасности, например, при эксплуатации на трубопроводах, транспортирующих легковоспламеняющиеся рабочие среды. Пневмопривод работает при высоких температурах, в сильно запыленной и агрессивной среде.

Изобретенный более века тому назад пневмопривод далеко еще не исчерпал всех своих возможностей, а внедрение в него современной электроники и средств программного обеспечения только способствует укреплению его потенциала.

armatek.ru

Пневматический тормозной привод — Энциклопедия журнала "За рулем"

Пневматический тормозной привод для затормаживания автомобиля или прицепа использует сжатый воздух.Преимущества и недостатки пневматического привода во многом противоположны гидравлическому приводу.Так, к преимуществам относят неограниченные запасы и дешевизну рабочего тела (воздух), сохранение работоспособности при небольшой разгерметизации, т. к. возможная утечка компенсируется подачей воздуха от компрессора, возможность использования на автопоездах для непосредственного управления тормозами прицепа, использование в других устройствах, таких как пневматический звуковой сигнал, привод переключения многоступенчатых коробок передач, усилитель сцепления, привод дверей автобуса, подкачка шин и т. п.Недостатками пневмопривода являются: большое время срабатывания вследствие медленного поступления сжатого воздуха к удаленным воздухонаполняемым объемам через трубопроводы с малым диаметром, сложность конструкции, большие масса и размеры агрегатов из-за относительно небольшого рабочего давления, возможность выхода из строя при замерзании конденсата в трубопроводах и аппаратах при отрицательных температурах.

Простейший пневматический тормозной привод автомобиля:1 — ресивер;2 — педаль;3 — кран;4 — тормозной цилиндр;5 — пружина;6 — шток тормозного механизма;7 — тормозная колодка

Простейший пневматический тормозной привод автомобиля (а) состоит из ресивера, в который подается сжатый воздух из компрессора, крана, приводимого в действие от педали, и тормозной камеры, шток которой связан с разжимным кулаком тормозного механизма.При торможении поворотная пробка крана соединяет внутреннюю полость тормозной камеры с ресивером и сжатый воздух, воздействующий на диафрагму, приводит в работу тормозной механизм (б).Давление воздуха в тормозной камере устанавливается такое же, как в ресивере. При повороте пробки крана в другое положение (а) сжатый воздух выходит из камеры в атмосферу. Разжимной кулак возвращается в первоначальное положение и происходит растормаживание.

Принципиальная схема пневматического привода тормозов грузового автомобиля и прицепа

Реальный пневматический привод современного автомобиля намного сложнее. Принципиальная схема пневматического привода тормозов грузового автомобиля и прицепа показана на рисунке. Привод тягача содержит аппараты подготовки воздуха, аппараты контуров рабочей, стояночной и запасной систем тягача, аппараты управления тормозами прицепа. Привод прицепа включает аппараты рабочей и стояночной систем.Воздух от компрессора поступает через регулятор давления, влагоотделитель к четырехконтурному защитному клапану (все эти устройства составляют систему подготовки воздуха). Тормозная система выполнена многоконтурной. К контуру привода передних тормозных механизмов относятся: ресивер с запасом воздуха, одна из секций тормозного крана, модуляторы антиблокировочной системы (АБС) и тормозные камеры передних тормозных механизмов. К контуру задних тормозных механизмов принадлежит второй ресивер, вторая секция тормозного крана, регулятор тормозных сил, модуляторы АБС и две тормозные камеры с пружинными энергоаккумуляторами. На трехосных автомобилях тормозные камеры задних осей обычно входят в состав заднего контура. На многоосных автомобилях тормозные камеры группируются в контуры различными вариантами, например, 1–2 и 3–4 оси или 1–3 и 2–4 оси. Третий контур является контуром стояночной системы и состоит из ресивера, тормозного крана со следящим действием, которым управляет водитель, ускорительного клапана и энергоаккумуляторов. Контур вспомогательной системы содержит кран управления и два пневмоцилиндра. Для управления тормозами прицепа на автомобиле-тягаче также имеются одинарный защитный клапан, клапан управления тормозами прицепа и соединительные головки.Привод полуприцепа или прицепа имеет две соединительные головки, два магистральных фильтра, воздухораспределительный клапан, ручной кран стояночной системы без следящего действия, ресивер, регулятор тормозных сил, модуляторы АБС, тормозные камеры с энергоаккумуляторами или без них. Соединение пневмопривода тягача и прицепа выполняют двумя трубопроводами, которые образуют питающую и управляющую магистрали.Реальная схема конкретного автомобиля может отличаться от рассмотренной наличием или отсутствием дополнительных приборов.Сжатие воздуха для пневматического тормозного привода осуществляется компрессором, приводящимся в действие непосредственно от двигателя автомобиля. Максимальное давление, создаваемое компрессором, может достигать 1,5 МПа. Максимальное рабочее избыточное давление воздуха в ресиверах привода составляет 0,65–0,8 МПа и автоматически ограничивается регулятором давления.Атмосферный воздух имеет определенный процент влажности. При сжатии компрессором он нагревается, а при движении по трубопроводам и через аппараты привода — остывает. При этом из сжатого воздуха выделяется влага, которая ускоряет коррозию внутренних поверхностей системы, смывает смазку и, главное, может замерзнуть в трубопроводах и аппаратах при отрицательной температуре, что приведет к отказу тормозов. Для удаления влаги (очистки воздуха) в питающей части привода, до или после регулятора давления, устанавливают влагоотделители. Очистка сжатого воздуха от влаги в них осуществляется термодинамическим или адсорбционным способом. Третий способ защиты — перевод конденсата в состояние низкозамерзающей жидкости. Для этого в специальном аппарате — спиртонасытителе — при низких температурах окружающей среды в сжатый воздух вводят пары спирта, которые, смешиваясь с выделившейся влагой, образуют раствор (антифриз) с низкой температурой замерзания.Четырехконтурный защитный клапан, разделяет привод на четыре, действующих независимо друг от друга, контура. Защитный клапан позволяет двигаться воздуху только в направлении к ресиверам, защищая запас воздуха в ресиверах при разгерметизации на участке аппаратов подготовки воздуха. Одновременно он защищает исправные контуры от неисправного в случае обрыва в одном из них, не позволяя выйти воздуху в атмосферу сразу из всех ресиверов привода. Одинарный защитный клапан отключает привод тягача в случае разрыва питающего трубопровода прицепа. На некоторых автомобилях вместо четырехконтурного применяют двойные или тройные защитные клапаны аналогичного назначения. Пройдя через четырехконтурный клапан, сжатый воздух заполняет ресиверы контуров.Работой любого контура рабочей системы управляет одна секция тормозного крана. Тормозной кран — это следящий аппарат, через который воздух при торможении поступает из ресивера в рабочие аппараты. Он управляется тормозной педалью в кабине водителя. При растормаживании через тормозной кран воздух из привода выпускается в атмосферу. Регулятор тормозных сил и модулятор АБС корректируют давление воздуха в контурах при торможении.Стояночной тормозной системой управляют с помощью ручного тормозного крана, установленного в кабине водителя. Исполнительным элементом контура являются энергоаккумуляторы. Между краном и энергоаккумулятором размещен ускорительный клапан. Тормозной кран уменьшает или увеличивает давление в полости ускорительного клапана, который в соответствии с этим либо пропускает из ресивера воздух в цилиндр энергоаккумулятора, а значит, повышает в нем давление, либо для снижения давления в цилиндре выпускает воздух из него в атмосферу. Чтобы обеспечить быстрый выпуск воздуха из энергоаккумуляторов при торможении ускорительный клапан располагают максимально близко от них. Два крайних, фиксированных, положения рукоятки соответствуют максимальному избыточному давлению воздуха в энергоаккумуляторах или атмосферному. При промежуточных положениях рукоятки давление также может принимать любое промежуточное значение, что позволяет использовать данный контур в качестве контура запасной тормозной системы и производить плавное торможение.Контур вспомогательной системы позволяет включать в работу моторный тормоз — замедлитель. При нажатии кнопки крана воздух поступает в пневмоцилиндры контура, а при отпускании — выходит в атмосферу. Из-за малого расхода воздуха этот контур не имеет собственного ресивера.Магистраль, питающая ресивер прицепа сжатым воздухом (питающая магистраль), начинается от одинарного защитного клапана, а управляющая процессом торможения прицепа — от клапана управления тормозами прицепа. Подача сжатого воздуха в ресивер прицепа производится постоянно, независимо от того, происходит торможение тягача или нет. Управляющая магистраль используется для подачи команды на прицеп о начале торможения и его интенсивности. Команда подается путем изменения давления воздуха в управляющем трубопроводе. Чем больше давление в трубопроводе, тем интенсивнее тормозится прицеп. Максимальной интенсивности торможения соответствует максимальное давление в магистрали, при расторможенном состоянии полуприцепа избыточное давление в магистрали отсутствует. Давление в управляющей магистрали изменяется с помощью клапана управления тормозами прицепа. Он соединен с обоими контурами рабочей системы через контур стояночной системы. При торможении рабочей системой тягача воздух от обоих контуров поступает в клапан, который срабатывает и увеличивает давление в управляющей магистрали. Если выходит из строя один из рабочих контуров, торможение прицепа осуществляется по команде от исправного контура. При торможении стояночной системой тягача уменьшение давления в ее контуре приводит к срабатыванию клапана, и также осуществляется торможение прицепа.Помимо штатного режима торможения клапан обеспечивает аварийное управление тормозами прицепа при разрыве питающей магистрали. Для этого он снабжен специальным устройством обрыва, который уменьшает давление в питающей магистрали, если командное давление от контуров тягача на вход аппарата поступает, а давление на выходе аппарата не увеличивается.Для управления торможением прицепа его воздухораспределитель соединен с управляющей и питающей магистралями, с ресивером и тормозными камерами. По своим функциям воздухораспределительный клапан прицепа аналогичен тормозному крану на тягаче, но управляется он не педалью, а командным давлением воздуха, поступающим от тягача. В расторможенном состоянии воздух по питающей магистрали через воздухораспределитель заполняет ресивер прицепа, при этом давление в управляющей магистрали отсутствует. Максимальное давление воздуха в ресивере прицепа равно максимальному давлению в ресиверах автомобиля.При торможении тягача с помощью рабочей или стояночной тормозной системы давление в управляющей магистрали увеличивается, что приводит к срабатыванию воздухораспределителя, который подает воздух из ресивера прицепа в тормозные камеры. Когда давление в управляющей магистрали снижается, прицеп растормаживается. Кроме того, торможение прицепа происходит всегда при уменьшении давления воздуха в питающем трубопроводе ниже 0,48 МПа, что может происходить при обычной расцепке тягача от прицепа на стоянке или при срабатывании клапана обрыва на тягаче. Такое затормаживание остановит прицеп при его полном отрыве от тягача во время движения. Растормаживание осуществляется или автоматически при последующем увеличении давления свыше 0,48 МПа, или вручную — специальной кнопкой на воздухораспределителе. Регулятор тормозных сил и модулятор АБС предназначены для корректирования давления воздуха, поступающего от воздухораспределителя к тормозным камерам.Торможение прицепа стояночной системой производится краном, который выпускает воздух из энергоаккумуляторов тормозов прицепа. Некоторые прицепы могут снабжаться электромагнитным клапаном, который служит для включения тормозной системы прицепа при торможении автомобиля вспомогательной тормозной системой (моторным тормозом-замедлителем). При подаче электросигнала электромагнитному клапану от тягача он обеспечивает поступление сжатого воздуха из ресивера к тормозным камерам.

wiki.zr.ru

Тормозные системы с комбинированным приводом.

Комбинированный привод тормозов



Комбинированным (смешанным) называется привод, в работе которого используется сочетание двух или даже нескольких типов приводов, например, гидравлического с пневматическим, электрического с пневматическим или электрического, гидравлического и пневматического. Из-за сложности конструкции и, как следствие, относительной дороговизны, такие приводы применяются только в случае крайней необходимости, поэтому в массовом автомобильном производстве они встречаются не часто. Особенности конструкций комбинированного привода тормозных механизмов рассмотрим на примере пневмогидравлического (или гидропневматического) и электропневматического приводов.

***

Пневмогидравлический тормозной привод

Пневмогидравлический (или гидропневматический) привод является наиболее распространенным типом комбинированных приводов, в работе которых используется два рабочих тела – сжатый воздух и жидкость. Комбинация положительных свойств гидравлического и пневматического привода позволяет в этом случае повысить общую эффективность тормозной системы автотранспортных средств.

Пневмогидравлический привод имеет пневматический источник энергии в виде сжатого воздуха, а непосредственная передача усилия к тормозным колодкам осуществляется тормозной жидкостью под давлением. Такой тип привода позволяет создавать большое давление в гидравлической части привода, увеличивая, таким образом, мускульное усилие водителя на тормозную педаль. Пневмогидравлический привод, в отличие от «чистого» пневматического привода, срабатывает значительно быстрее, т. е. отличается быстродействием, создавая при этом значительные тормозящие моменты на колесах. Время срабатывания пневмогидравлического привода примерно в полтора-три раза меньше, чем время срабатывания пневматического привода.

Но, как говорится, нет добра без худа. Пневмогидравлический привод существенно сложнее по конструкции, чем гидравлический или пневматический приводы, следовательно менее технологичен в производстве, дороже, а также требует больше затрат на техническое обслуживание в процессе эксплуатации. Кроме того, пневмогидравлический привод «унаследовал» от гидравлического привода высокую чувствительность к попаданию воздуха в гидравлическую часть системы. Эти негативные факторы в настоящее время сдерживают широкое применение пневмогидравлического привода в тормозных системах автомобилей.

Конструктивно пневмогидравлические приводы могут выполняться по различным схемам и иметь разную комбинацию использующихся устройств и приборов. Общее устройство пневмогидравлического привода рассмотрим на примере тормозной системы автомобиля Урал-4320, схема которого изображена на рис. 1.

Тормозной привод автомобиля Урал-4320 состоит из двух гидравлических контуров и одного пневматического контура. Первый гидравлический контур приводит в действие тормозные механизмы переднего и среднего мостов, второй – тормозные механизмы заднего моста.

Главной отличительной особенностью этого привода является наличие в нем пневмогидравлических аппаратов (рис. 2), которые иногда называют пневмоусилителями. Однако усилитель всегда устанавливается параллельно основному приводу (например, вакуумный усилитель в гидроприводе тормозов, гидравлический усилитель в рулевом управлении и т. п.), а пневмогидравлический аппарат в приводе тормозной системы рассматриваемого автомобиля установлен последовательно, являясь связующим звеном между гидравлической и пневматической частью тормозного привода. И если в случае с вакуумным усилителем (или усилителем руля) тормозная система (или рулевое управление) работать будет даже при отказе усилителя, хоть и менее эффективно, то в случае отказа пневмогидравлического аппарата тормозная система полностью теряет работоспособность.

В пневмогидравлическом аппарате происходит преобразование сравнительно невысокого давления воздуха (0,6…0,75 МПа) в относительно большое давление тормозной жидкости (10…15 МПа). Увеличение давления происходит вследствие значительной разности рабочих площадей поршней пневматической и гидравлической частей пневмогидравлического аппарата.

Пневмогидравлический аппарат состоит из двух пневматических цилиндров с промежуточной вставкой 4, внутри которой помещены пневматические поршни 3 и 6 на общем штоке 7 с возвратной пружиной, гидравлического цилиндра 11 с бачком 1 для тормозной жидкости, имеющего традиционную конструкцию.

Наличие двух пневматических поршней позволяет получить необходимое давление в гидравлической части привода при сравнительно небольших габаритах пневмогидравлического аппарата.

При нажатии на педаль тормоза воздух через тормозной кран поступает по трубопроводу под задний поршень 6. К другому поршню воздух поступает по каналу и радиальным отверстиям 10 в штоке 7. Под давлением воздуха шток с поршнями перемещается и через толкатель действует на поршень главного гидравлического цилиндра 11, который вытесняет тормозную жидкость в тормозную магистраль.

При растормаживании воздух из пневмоцилиндров через тормозной кран выходит в окружающую среду. Поршни главного гидравлического цилиндра и пневмоцилиндров под действием пружин возвращаются в исходное положение.

В случае разгерметизации гидравлического контура или увеличении зазора в тормозных механизмах ход штока 7 при нажатии на тормозную педаль увеличится, что приведет к механическому замыканию контактов выключателя 12. Загоревшаяся на щитке приборов лампочка будет сигнализировать о неисправности системы.

Наряду с пневмогидравлическим приводом в настоящее время получают распространение тормозные системы с электрогидравлическим и электропневматическим приводом, которые обладают еще большим быстродействием.

***



Электропневматический привод тормозов

Электропневматический привод приобретает все большее распространение на длиннобазовых автомобилях в автопоездах в связи с необходимостью уменьшения времени срабатывания тормозного привода и улучшения согласованности работы тормозной системы тягача с тормозной системой прицепного транспортного средства.

Наряду с очевидными функциональными преимуществами отсутствие в пневматической линии привода многих традиционных приборов вызывает проблему обеспечения кинематического слежения, а также распределения тормозных сил между мостами. Поэтому для выполнения ключевых задач при управлении рабочими тормозными системами в электрическую часть комбинированного привода вводятся электронные блоки.

Принципиальная схема электропневматического привода рабочей тормозной системы с электронным управлением представлена на рис. 3. Тормозная педаль 1 устанавливается на оси, связанной с потенциометром. При нажатии на педаль электронные блоки управления (ЭБУ) подают питание на электрические клапаны модуляторов 3 и 8 автомобиля и прицепа, которые сообщают ресиверы с тормозными камерами 2 и 5 автомобиля и 9 прицепа. Давление в тормозных камерах устанавливается пропорционально перемещению тормозной педали, т. е. сигналу, поступающему в электронные блоки от потенциометра, связанного с педалью тормоза.

При неизменном положении тормозной педали 1 давление в тормозных камерах 2, 5, 9 остается постоянным, так как клапаны модулятора 3 и 8 в этом случае закрыты. Закрытие клапанов происходит по команде блоков управления при равенстве сигналов от потенциометра педали и датчиков 6, 10 давления в контурах пневмопривода.

Регулирование тормозных сил между мостами происходит также под управлением электронных блоков в зависимости от сигналов датчиков 7, 11 нагрузки на каждую ось. В случае выхода из строя электрической цепи автопоезд может быть остановлен с помощью ручного крана 4.

***

Регуляторы тормозных сил



k-a-t.ru

Пневматический привод

11.1. Общие сведения о применении газов в технике

Любой объект, в котором используется газообразное вещество, можно отнести к газовым системам. Поскольку наиболее доступным газом является воздух, состоящий из смеси множества газов, то его широкое применение для выполнения различных процессов обусловлено самой природой. В переводе с греческого pneumatikos - воздушный, чем и объясняется этимологическое происхождение названия пневматические системы. В технической литературе часто используется более краткий термин - пневматика.

Пневматические устройства начали применять еще в глубокой древности (ветряные двигатели, музыкальные инструменты, кузнечные меха и пр.), но самое широкое распространение они получили вследствие создания надежных источников пневматической энергии - нагнетателей, способных придавать газам необходимый запас потенциальной и (или) кинетической энергии.

Пневматический привод, состоящий из комплекса устройств для приведения в действие машин и механизмов, является далеко не единственным направлением использования воздуха (в общем случае газа) в технике и жизнедеятельности человека. В подтверждение этого положения кратко рассмотрим основные виды пневматических систем, отличающихся как по назначению, так и по способу использования газообразного вещества.

По наличию и причине движения газа все системы можно разделить на три группы.

К первой группе отнесем системы с естественной конвекцией (циркуляцией) газа (чаще всего воздуха), где движение и его направление обусловлено градиентами температуры и плотности природного характера, например, атмосферная оболочка планеты, вентиляционные системы помещений, горных выработок, газоходов и т.п.

Ко второй группе отнесем системы с замкнутыми камерами, не сообщающимися с атмосферой, в которых может изменяться состояние газа вследствие изменения температуры, объема камеры, наддува или отсасывания газа. К ним относятся различные аккумулирующие емкости (пневмобаллоны), пневматические тормозные устройства (пневмобуферы), всевозможные эластичные надувные устройства, пневмогидравлические системы топливных баков летательных аппаратов и многие другие. Примером устройств с использованием вакуума в замкнутой камере могут быть пневмозахваты (пневмоприсоски), которые наиболее эффективны для перемещения штучных листовых изделий (бумага, металл, пластмасса и т.п.) в условиях автоматизированного и роботизированного производства.

К третьей группе следует отнести такие системы, где используется энергия предварительно сжатого газа для выполнения различных работ. В таких системах газ перемещается по магистралям с относительно большой скоростью и обладает значительным запасом энергии. Они могут быть циркуляционными (замкнутыми) и бесциркуляционными. В циркуляционных системах отработавший газ возвращается по магистралям к нагнетателю для повторного использования (как в гидроприводе). Применение систем весьма специфично, например, когда недопустимы утечки газа в окружающее пространство или невозможно применение воздуха из-за его окислительных свойств. Примеры таких систем можно найти в криогенной технике, где в качестве энергоносителя используются агрессивные, токсичные газы или летучие жидкости (аммиак, пропан, сероводород, гелий, фреоны и др.).

В бесциркуляционных системах газ может быть использован потребителем как химический реагент (например, в сварочном производстве, в химической промышленности) или как источник пневматической энергии. В последнем случае в качестве энергоносителя обычно служит воздух. Выделяют три основных направления применения сжатого воздуха.

К первому направлениюотносятся технологические процессы, где воздух выполняет непосредственно операции обдувки, осушки, распыления, охлаждения, вентиляции, очистки и т.п. Очень широкое распространение получили системы пневмотранспортирования по трубопроводам, особенно в легкой, пищевой, горнодобывающей отраслях промышленности. Штучные и кусковые материалы транспортируются в специальных сосудах (капсулах), а пылевидные в смеси с воздухом перемещаются на относительно большие расстояния аналогично текучим веществам.

Второе направление- использование сжатого воздуха в пневматических системах управления (ПСУ) для автоматического управления технологическими процессами (системы пневмоавтоматики). Это направление получило интенсивное развитие с 60-х годов благодаря созданию универсальной системы элементов промышленной пневмоавтоматики (УСЭППА). Широкая номенклатура УСЭППА (пневматические датчики, переключатели, преобразователи, реле, логические элементы, усилители, струйные устройства, командоаппараты и т.д.) позволяет реализовать на ее базе релейные, аналоговые и аналого-релейные схемы, которые по своим параметрам близки к электротехническим системам. Благодаря высокой надежности они широко используются для циклового программного управления различными машинами, роботами в крупносерийном производстве, в системах управления движением мобильных объектов.

Третьим направлениемприменения пневмоэнергии, наиболее масштабным по мощности, является пневматический привод, который в научном плане является одним из разделов обшей механики машин. У истоков теории пневматических систем стоял И.И. Артоболевский. Он был руководителем Института машиноведения (ИМАШ) в Ленинграде, где под его руководством в 40 - 60-х годах систематизировались и обобщались накопленные сведения по теории и проектированию пневмосистем. Одной из первых работ по теории пневмосистем была статья А.П. Германа "Применение сжатого воздуха в горном деле", опубликованная в 1933 г., где впервые движение рабочего органа пневмоустройства решается совместно с термодинамическим уравнением состояния параметров воздуха.

Значительный вклад в теорию и практику пневмоприводов внесли ученые Б.Н. Бежанов, К.С. Борисенко, И.А. Бухарин, А.И. Вощинин, Е.В. Герц, Г.В. Крейнии, А.И. Кудрявцев, В.А. Марутов, В.И. Мостков, Ю.А. Цейтлин и другие.

studfiles.net

Водопенные коммуникации пожарных автоцистерн других типов

Строительные машины и оборудование, справочник

Категория:

   Пожарные автомобили

Водопенные коммуникации пожарных автоцистерн других типов

На пожарных автоцистернах АЦ-30 (130)-63А, АЦ-30 (53А)-106Б, а также автонасосах АН-30 (130)-64А и АНР-40 (130)-127А принципиальные схемы водопенных коммуникаций и их устройство незначительно отличаются от представленной на рис. 5.5. На этих пожарных автомобилях отсутствуют линии на лафетный пожарный ствол. Кроме того, управление водопен-ными коммуникациями на них предусмотрено только ручное. Поэтому клапаны Ду-80 и Ду-32 заменены на вентили.

У пожарной автоцистерны АЦ-40 (131)-42Б пневматический — привод используется только для приведения в действие распределительного клапана.

На автонасосах не имеется автоцистерн и лафетных стволов. Поэтому их водопенные коммуникации включают коллектор, напорные и всасывающий трубопроводы и коммуникации для подачи пены. Последние имеют такое же устройство как и у автоцистерн.

На напорных линиях у коллекторов установлены шаровые краны или задвижки Ду-70 на АНР-40 (130J-127A.

Водопенные коммуникации пожарного автомобиля АЦ-40 (103Г1) 181 (рис. 5.8). Насосная установка этого пожарного автомобиля размещена в средней части машины. Поэтому в водопенных коммуникациях имеются два всасывающих патрубка. Особенностью является также наличие двух баков с пенообразователем вместимостью по 280 л каждый. Соединение пено-баков с пеносмесителем типа ПС-5 производится с помощью клапанов типа Ду-32. Эти клапаны имеют ручной и пневматический приводы. Пробковые краны имеют только ручной привод. Пенообразователь можно подавать в систему из посторонней емкости через штуцер «а», открывая пробковый кран. Через этот кран возможно подавать воду для промывки пеносмесителя. Цистерна вместимостью 5000 л воды подключается к насосу типа ПН-40У с помощью клапана Ду-80. Клапан может приводиться в действие вручную или с помощью сжатого воздуха. Цистерна может заправляться водой от насоса. Вода при этом подается в коллектор и через вентиль Ду-40 поступает в цистерну. От коллектора вода через задвижки типа Ду-70 подается в лафетный ствол и к напорным трубопроводам. Мановакуумметры, а также тахометр обеспечивают контроль работы насосной установки.

Лафетный ствол установлен на крыше кабины, управление стволом только ручное и осуществляется через люк. Поворот в горизонтальной и вертикальной плоскостях производится с помощью рукоятки. Лафетный ствол комплектуется насадками для подачи воздушно-механической пены или воды. Вода (или раствор пенообразователя) подается насосом по трубопроводу при открытой задвижке.

Рис. 5.9. Дистанционное управление водопенными коммуникациями: 1 — баллон воздушный; 2 — клапан-ограничитель; 3 — колонка управления; 4 — клапан Ду-32; 5 — клапан Ду-80

Дистанционное пневматическое управление водопенными коммуникациями осуществляется в соответствии со схемой рис. 5.9. На колонке управления имеются только два крана. Один из них включает клапан 5 типа Ду-80, а второй — два клапана типа Ду-32.

Водопенные коммуникации АЦ-40 (131)-153. Пожарный автомобиль АЦ-40 (131)-153 предназначен для работы в условиях низких температур. В цистерне имеется теплообменник для нагрева воды, подаваемой в рукавные линии. Это и обусловило особенности водопенных коммуникаций. В водопенных коммуникациях (рис. 5.10) используются арматура и приборы, описанные раньше. Насосная установка размещена в средней части автомобиля. Насос типа ПН-40У имеет два всасывающие патрубка, выходящие на левую и правую стороны автомобиля в средней части. По трубопроводу вода из насоса поступает в теплообменник системы охлаждения автомобиля и по трубопроводу возвращается во всасывающую полость насоса.

Водопенные коммуникации обеспечивают забор воды из цистерны 16 (ее вместимость 2340 л), а посредством всасывающих патрубков — из открытого водоема или водопроводной сети.

Клапан Ду-80 может открываться вручную или с помощью сжатого воздуха. Вода под давлением подается в коллектор и через задвижки или типа Ду-70 в напорные трубы или в лафетный ствол. Пенообразователь поступает в пеносмеситель из пенобака (его вместимость 150 л) или из посторонней емкости, подключаемой к патрубку пробкового крана типа Ду-32. Промывка пеносмесителя возможна при подаче воды через штуцер или к крану.

Рис. 5.10. Схема коммуникаций АЦ-40 (131)-153:1 — насос; 2,9 — мановакуумметры; 3 — всасывающий па« трубок; 4, 5 — трубопроводы с кранами к теплообменнику; 6 — напорный трубопровод; 7, 12 — задвижки Ду-70; 8 — коллектор; 10 — тахометр; 11 — лафетный ствол; 13 — вентиль Ду-25; 14 — линия дозировки; 15 — клапан поплавковый дозирующий; 16 — цистерна; 17 — пенобак; 18 — кран; 19 — штуцер; 20 — кран пробковый; 21 — клапан Ду-80; 22 — трубопровод цистерна—насос; 23 — линия пенная; 24 — трубопровод наполнения цистерны; 25 — вентиль Ду-15; 26 — кран пробковый Ду-32; 27 — вентиль Ду-40; 23 — пеносмеситель

Подача нагретой воды в рукавные линии при работе от открытого источника производится следующим образом. Вентиль Ду-40 должен быть закрыт, а вентиль типа Ду-15 следует открыть. Для притока воды в насос необходимо открыть кран пеносмесителя и установить стрелку пеносмесителя на отметку, что означает дозировку (40—50 л/мин). Пеносмеситель будет подсасывать подогретую воду из цистерны и подавать ее в насос.

Во время работы насоса с подогревом вода расходуется из цистерны, и для компенсации расхода предусмотрено ее пополнение, которое осуществляется следующим образом. При открытом вентиле типа Ду-25 вода из насоса поступает по трубопроводу к поплавковому дозирующему клапану, установленному в цистерне. При снижении уровня воды в цистерне поплавок опускается и включает специальный клапан, через который вода проходит в цистерну.

Лафетный ствол установлен на крыше кабины. Он комплектуется насадками для подачи воды или воздушно-механической пены. Управление стволом дистанционное с ручным механическим приводом из кабины. Поворот в горизонтальной плоскости осуществляется рукояткой, перемещение ствола в вертикальной плоскости производится вращением маховика привода. Вода в ствол подается от коллектора насоса.

Читать далее: Водопенные коммуникации пожарной автоцистерны АЦ-40 (375) ЦА-102А

Категория: - Пожарные автомобили

Главная → Справочник → Статьи → Форум

stroy-technics.ru